吴恩达 Convolutional Neural Networks第二周quizzes

1.Which of the following do you typically see as you move to deeper layers in a ConvNet?
nH and nW decreases, while nC also decreases
nH and nW increases, while nC decreases
nH and nW decrease, while nC increases
nH and nW increases, while nC also increases
随着网络的加深,通道数越来越多,feature map size 变小
2.Which of the following do you typically see in a ConvNet? (Check all that apply.)
Multiple CONV layers followed by a POOL layer
Multiple POOL layers followed by a CONV layer
FC layers in the last few layers
FC layers in the first few layers

3.In order to be able to build very deep networks, we usually only use pooling layers to downsize the height/width of the activation volumes while convolutions are used with “valid” padding. Otherwise, we would downsize the input of the model too quickly.
True
False
这题为false,第一次做错了,这里错在的是valid padding ,一般用的是same padding(1.the most commonly used padding mode in CNN is "same" padding,one of the advantage over the other padding modes is that same padding preserves the height and width of the input images or tensors,which make designing a network architecture more convenient.2.one of the disadvantage of the valid padding versus same padding ,for example,is that the volume of the tensors would decrease substantially in neural networks with many layers,which can be dangerous to the network performance.3.in practice,it is recommended that you preserve the spatial size using same padding for the convolutional layers and decrease the spatial size via pooling layers instead.)

4.Training a deeper network (for example, adding additional layers to the network) allows the network to fit more complex functions and thus almost always results in lower training error. For this question, assume we’re referring to “plain” networks.
True
False
这题也是false,自己做错的原因是题目看错了,人家的本意是即使是plain 的network 随着网络的加深 trian error也降低,这明显就是错的。
5.

  1. Which ones of the following statements on Residual Networks are true? (Check all that apply.)
    The skip-connection makes it easy for the network to learn an identity mapping between the input and the output within the ResNet block.
    Using a skip-connection helps the gradient to backpropagate and thus helps you to train deeper networks
    A ResNet with L layers would have on the order of L2 skip connections in total. 不是L的平方,应该是L除以2.
    The skip-connections compute a complex non-linear function of the input to pass to a deeper layer in the network.

  2. Suppose you have an input volume of dimension 64x64x16. How many parameters would a single 1x1 convolutional filter have (including the bias)?
    2
    17
    4097
    1
    1x1x16 +bias 1 = 17

8.Suppose you have an input volume of dimension nH x nW x nC. Which of the following statements you agree with? (Assume that “1x1 convolutional layer” below always uses a stride of 1 and no padding.)
You can use a 1x1 convolutional layer to reduce nH, nW, and nC.
You can use a pooling layer to reduce nH, nW, but not nC.
You can use a 1x1 convolutional layer to reduce nC but not nH, nW.
You can use a pooling layer to reduce nH, nW, and nC.

9.Which ones of the following statements on Inception Networks are true? (Check all that apply.)
Inception blocks usually use 1x1 convolutions to reduce the input data volume’s size before applying 3x3 and 5x5 convolutions.
A single inception block allows the network to use a combination of 1x1, 3x3, 5x5 convolutions and pooling.
Making an inception network deeper (by stacking more inception blocks together) should not hurt training set performance.错在自己对should not 的理解上,这里不是不应该,就是not 的意思。只有resnet 可以说随着网络的加深,train error 一直下降 其他都是先降后升
Inception networks incorporates a variety of network architectures (similar to dropout, which randomly chooses a network architecture on each step) and thus has a similar regularizing effect as dropout.
自己之前选了前三个,是错的 所以选1 2 试一下 确实是1 2

  1. Which of the following are common reasons for using open-source implementations of ConvNets (both the model and/or weights)? Check all that apply.
    It is a convenient way to get working an implementation of a complex ConvNet architecture.
    A model trained for one computer vision task can usually be used to perform data augmentation even for a different computer vision task.
    The same techniques for winning computer vision competitions, such as using multiple crops at test time, are widely used in practical deployments (or production system deployments) of ConvNets.在paper之类的会用,在实际应用场景中用的少,毕竟加大了很多计算量然后运行时间也变多了,就是带来的性能提升比其计算代价小,所以工程上不用。
    Parameters trained for one computer vision task are often useful as pretraining for other computer vision tasks.
    选了 1 3 4 是错的 这次选 3 4 还是错的 其实是1 4 3为什么是错的,估计是因为这样太耗费资源了。
    错误 :3.4.9.10

有疑问的时候去论坛搜索,比直接Google更容易找到答案,要是没有人问过,自己问,毕竟有助教。感觉论坛大法好。可以很好的解答自己的疑惑。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,312评论 0 10
  • 文|张小兔 不同于对翡翠的一见钟情,对蜜蜡的爱是经过考量和研究慢慢渗透进来了,从路人甲到被圈粉,是情理之中的! ...
    小兔菇凉阅读 304评论 0 1
  • 影评人张小北有过这样一段话:“内心的隐秘欲望被揭示和分享,才是我们要聚集在一起看电影的动力。原始人围聚在山洞的火堆...
    Nesier无恙阅读 3,788评论 14 16