Python,有趣的图像处理(第一弹)

当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。

图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。

让我们看一下用于图像处理任务的一些常用Python库。

1. scikit Image

scikit-image是一个基于numpy数组的开源Python包。 它实现了用于研究、教育和工业应用的算法和实用程序。 即使是对于那些刚接触Python的人,它也是一个相当简单的库。 此库代码质量非常高并已经过同行评审,是由一个活跃的志愿者社区编写的。

使用说明文档:

https://scikit-image.org/docs/stable/user_guide.html

用法举例:图像过滤、模版匹配

可使用“skimage”来导入该库。大多数功能都能在子模块中找到。

模版匹配(使用match_template函数)

gallery上还有更多例子。

https://scikit-image.org/docs/dev/auto_examples/

2. Numpy

Numpy是Python编程的核心库之一,支持数组结构。 图像本质上是包含数据点像素的标准Numpy数组。 因此,通过使用基本的NumPy操作——例如切片、脱敏和花式索引,可以修改图像的像素值。 可以使用skimage加载图像并使用matplotlib显示。

使用说明文档:

http://www.numpy.org/

用法举例:使用Numpy来对图像进行脱敏处理

加Q群:1141249762 每天直播课, 私聊群主免费获取学习权限(真实有效,想学Python你就来)

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容