一 名称空间
名称空间即存放名字与对象映射/绑定关系的地方。对于x=3,Python会申请内存空间存放对象3,然后将名字x与3的绑定关系存放于名称空间中,del x表示清除该绑定关系。
在程序执行期间最多会存在三种名称空间
1.1 内建名称空间
伴随python解释器的启动/关闭而产生/回收,因而是第一个被加载的名称空间,用来存放一些内置的名字,比如内建函数名
>>> max
<built-in function max> #built-in内建
1.2 全局名称空间
伴随python文件的开始执行/执行完毕而产生/回收,是第二个被加载的名称空间,文件执行过程中产生的名字都会存放于该名称空间中,如下名字
import sys #模块名sys
x=1 #变量名x
if x == 1:
y=2 #变量名y
def foo(x): #函数名foo
y=1
def bar():
pass
Class Bar: #类名Bar
pass
1.3 局部名称空间
伴随函数的调用/结束而临时产生/回收,函数的形参、函数内定义的名字都会被存放于该名称空间中
def foo(x):
y=3 #调用函数时,才会执行函数代码,名字x和y都存放于该函数的局部名称空间中
名称空间的加载顺序是:内置名称空间->全局名称空间->局部名称空间,而查找一个名字,必须从三个名称空间之一找到,查找顺序为:局部名称空间->全局名称空间->内置名称空间。
二 作用域
2.1 全局作用域与局部作用域
按照名字作用范围的不同可以将三个名称空间划分为两个区域:
全局作用域:位于全局名称空间、内建名称空间中的名字属于全局范围,该范围内的名字全局存活(除非被删除,否则在整个文件执行过程中存活)、全局有效(在任意位置都可以使用);
局部作用域:位于局部名称空间中的名字属于局部范围。该范围内的名字临时存活(即在函数调用时临时生成,函数调用结束后就释放)、局部有效(只能在函数内使用)。
2.2 作用域与名字查找的优先级
在局部作用域查找名字时,起始位置是局部作用域,所以先查找局部名称空间,没有找到,再去全局作用域查找:先查找全局名称空间,没有找到,再查找内置名称空间,最后都没有找到就会抛出异常
x=100 #全局作用域的名字x
def foo():
x=300 #局部作用域的名字x
print(x) #在局部找x
foo()#结果为300
在全局作用域查找名字时,起始位置便是全局作用域,所以先查找全局名称空间,没有找到,再查找内置名称空间,最后都没有找到就会抛出异常。
x=100
def foo():
x=300 #在函数调用时产生局部作用域的名字x
foo()
print(x) #在全局找x,结果为100
提示:可以调用内建函数locals()和globals()来分别查看局部作用域和全局作用域的名字,查看的结果都是字典格式。在全局作用域查看到的locals()的结果等于globals()
Python支持函数的嵌套定义,在内嵌的函数内查找名字时,会优先查找自己局部作用域的名字,然后由内而外一层层查找外部嵌套函数定义的作用域,没有找到,则查找全局作用域。
x=1
def outer():
x=2
def inner(): # 函数名inner属于outer这一层作用域的名字
x=3
print('inner x:%s' %x)
inner()
print('outer x:%s' %x)
outer()
#结果为
inner x:3
outer x:2
在函数内,无论嵌套多少层,都可以查看到全局作用域的名字,若要在函数内修改全局名称空间中名字的值,当值为不可变类型时,则需要用到global关键字
x=1
def foo():
global x #声明x为全局名称空间的名字
x=2
foo()
print(x) #结果为2
当实参的值为可变类型时,函数体内对该值的修改将直接反应到原值
num_list=[1,2,3]
def foo(nums):
nums.append(5)
foo(num_list)
print(num_list)
#结果为
[1, 2, 3, 5]
对于嵌套多层的函数,使用nonlocal关键字可以将名字声明为来自外部嵌套函数定义的作用域(非全局)
def f1():
x=2
def f2():
nonlocal x
x=3
f2() #调用f2(),修改f1作用域中名字x的值
print(x) #在f1作用域查看x
f1()
#结果
3
nonlocal x会从当前函数的外层函数开始一层层去查找名字x,若是一直到最外层函数都找不到,则会抛出异常。
三 函数对象
函数对象指的是函数可以被当做’数据’来处理,具体可以分为四个方面的使用,我们如下:
3.1 函数可以被引用
>>> def add(x,y):
... return x+y
...
>>> func=add
>>> func(1,2)
3
3.2 函数可以作为容器类型的元素
>>> dic={'add':add,'max':max}
>>> dic
{'add': <function add at 0x100661e18>, 'max': <built-in function max>}
>>> dic['add'](1,2)
3
3.3 函数可以作为参数传入另外一个函数
>>> def foo(x,y,func):
... return func(x,y)
...
>>> foo(1,2,add)
3
3.4 函数的返回值可以是一个函数
def bar():
return add
func=bar()
func(1,2)
3
四 闭包函数
4.1 闭与包
基于函数对象的概念,可以将函数返回到任意位置去调用,但作用域的关系是在定义完函数时就已经被确定了的,与函数的调用位置无关。
x=1
def f1():
def f2():
print(x)
return f2
def f3():
x=3
f2=f1() #调用f1()返回函数f2
f2() #需要按照函数定义时的作用关系去执行,与调用位置无关
f3() #结果为1
也就是说函数被当做数据处理时,始终以自带的作用域为准。若内嵌函数包含对外部函数作用域(而非全局作用域)中变量的引用,那么该’内嵌函数’就是闭包函数,简称闭包(Closures)
x=1
def outer():
x=2
def inner():
print(x)
return inner
func=outer()
func() # 结果为2
可以通过函数的closure属性,查看到闭包函数所包裹的外部变量。
>>> func.__closure__
(<cell at 0x10212af78: int object at 0x10028cca0>,)
>>> func.__closure__[0].cell_contents
2
“闭”代表函数是内部的,“包”代表函数外’包裹’着对外层作用域的引用。因而无论在何处调用闭包函数,使用的仍然是包裹在其外层的变量。
2.2 闭包的用途
目前为止,我们得到了两种为函数体传值的方式,一种是直接将值以参数的形式传入,另外一种就是将值包给函数。
import requests
#方式一:
def get(url):
return requests.get(url).text
#方式二:
def page(url):
def get():
return requests.get(url).text
return get
提示:requests模块是用来模拟浏览器向网站发送请求并将页面内容下载到本地,需要事先安装:pip3 install requests
对比两种方式,方式一在下载同一页面时需要重复传入url,而方式二只需要传一次值,就会得到一个包含指定url的闭包函数,以后调用该闭包函数无需再传url。
# 方式一下载同一页面
get('https://www.python.org')
get('https://www.python.org')
get('https://www.python.org')
……
# 方式二下载同一页面
python=page('https://www.python.org')
python()
python()
python()
……
闭包函数的这种特性有时又称为惰性计算。使用将值包给函数的方式,在装饰器中也将大有用处。