算法面试题01 - 两数之和

实现一个算法,在一个无序整型数组中,找到两个数使其和为一个给定的值。请给出算法实现的代码,并分析算法时间和空间复杂度。

【示例】
给定数组numbers = [3, 7, 2, 5, 9],目标值sum = 9
因为numbers[1] + numbers[2] = 7 + 2 = 9
返回[1,2]

【要求】
输入一个无序数组,通过算法可以找到两数之和等于目标值的两元素的索引。

答案:

let numbers = [3, 7, 2, 5, 9]
print(twoSum(numbers, 9))

func twoSum(_ nums: [Int], _ target: Int) -> [Int] {

    var dict = [Int:Int]()

    for (index, num) in nums.enumerated() {
        let other = target - num
        if let storedIndex = dict[other] {
            return [storedIndex, index]
        } else {
            dict[num] = index
        }
    }

    return []
}

这个算法首先使用一个字典保存每个元素和其索引。然后遍历数组,并查找每个元素所对应的补数是否存在于字典中。
时间复杂度为 O(n),其中 n 为数组长度。算法只需要遍历一次数组,并在字典中查找操作,所以时间复杂度为线性。
空间复杂度为 O(n),因为使用了一个字典存放了数组中的每个元素。
所以这个算法的时间和空间复杂度较优,总体来说效率较高。这是一种常见的两数之和问题的解法。

知识点详解:

无序整型数组指的是数组中的元素可以是任意顺序,不是排序后的顺序。
例如:[3, 7, 2, 5, 9]
这就是一个无序整型数组,数组中的整数元素并不是按照大小排序的。
如果数组是:[2, 3, 5, 7, 9]
则这是一个有序数组,元素是按照从小到大的顺序排列的。

算法思路

  1. 定义一个字典dict来存放元素和索引
  2. 使用enumerated()遍历数组,同时获取元素和索引
  3. 定义other变量,来计算当前元素的补数(target值减去当前元素)
  4. 在字典中查找other是否存在:
    • 如果存在,表示找到了两数之和,直接返回两个元素的索引
    • 如果不存在,则将当前元素和索引添加到字典中
  5. 遍历完成如果未找到,返回空数组
  6. 时间复杂度为O(n),空间复杂度为O(n)
    这种利用字典保存元素和索引的方法,可以快速查找补数是否存在,从而得出两数之和的结果,是一个常用的算法

算法执行过程:

  1. dict = {}
  2. num = 3,dict[3] = 0
  3. num = 7,dict[7] = 1
  4. num = 2,目标值9与当前num的差值是7,7已在dict中,返回[dict[7] , index],即返回[1, 2]
  5. 两数之和为7 + 2 = 9,索引分别为1和2,返回[1, 2]

代码释义:

func twoSum(_ nums: [Int], _ target: Int) -> [Int]
  • nums: 输入的整数数组,用于查找两数之和
  • target: 查找的目标和的值
  • 返回值:[Int]: 返回一个整数数组,包含两数之和的两个元素在原数组中的索引

也就是说:

  • 输入:一个整数数组nums,和一个目标值target
  • 输出:一个整数数组,包含两个元素在nums数组中的索引,这两个元素相加等于target

题外话

如果题目中的无序数组换成有序数组,该如何优化呢?

对于有序数组,可以利用二分查找算法来降低时间复杂度。
具体思路是:

  1. 给定一个有序数组 nums 和目标值 target
  2. 对数组进行二分查找,找到一个数 num
  3. 计算目标值与 num 的差值 diff = target - num
  4. 再在数组中二分查找 diff
  5. 如果找到diff,返回 num 和 diff 的下标即可
  6. 如果未找到,移动 num 的查找范围,重复步骤2-5

该算法的时间复杂度可以降低到 O(logn),比线性查找更快。

参考代码:

func twoSum2(_ nums: [Int], _ target: Int) -> [Int] {

    for i in 0..<nums.count {
        let complement = target - nums[i]
        if let j = binarySearch(nums, complement, i+1, nums.count-1) {
            return [i, j]
        }
    }
    
    return []
}

func binarySearch(_ nums: [Int], _ target: Int, _ left: Int, _ right: Int) -> Int? {

    if left > right {
        return nil
    }
    
    let mid = (left + right) / 2
    if nums[mid] == target {
        return mid
    } else if nums[mid] < target {
        return binarySearch(nums, target, mid+1, right)
    } else {
        return binarySearch(nums, target, left, mid-1)
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容