flink - cdc - kafka

描述
  • 通过operation信息(insert、update、delete),实现了对上游数据的变更识别能力,这些信息会记录在于上游数据连接的flink table中
  • 通过cdc接入数据并且转换到其他flink table中时,该flink table需要设置primary key(该key从kafka消息的key或value中获取),以让flink识别出对应的update和delete操作应作用于该flink table的哪一条数据
  • sink外部表也需要设置对等的primary key,否则update fink table时将无法在原有数据上修改而是增加数据,以及delete flink table时将无法删除原有数据
  • value.fields-include选项指定为ALL时,表示key从value中获取,指定为EXCEPT_KEY时,表示从key中获取,默认为ALL
  • flink会先读topic的全量数据,再做增量的upsert
原理
  1. flink table A通过cdc对接上游数据,对接收到的数据进行primary key判断,如果primary key不存在于flink table A中,则判断为insert,如果primary key存在于flink table A中且数据的value不为空,则判断为update,否则判断为delete。
  2. flink table A把数据转换到flink table B时,flink table B会根据数据中附带的操作类型做所需的update和delete操作,因此需要flink table B指定primary key,以实现update和delete操作的数据定位
  3. flink table B把数据输出到外部系统时,flink table B会把操作类型解码成外部系统所能识别的操作命令,并且通过外部系统的唯一字段与flink table B的sink数据做比对,如果发现一致则进行对应的update/delete,否则做insert
依赖
1.0.0 ~ 1.3.0,适用于flink 1.12.x以下
<dependency>
    <groupId>com.alibaba.ververica</groupId>
    <artifactId>flink-connector-mysql-cdc</artifactId>
    <version>1.3.0</version>
</dependency>
1.4.0 ~ 2.0.0,适用于flink 1.13.x以上
<dependency>
    <groupId>com.ververica</groupId>
    <artifactId>flink-connector-mysql-cdc</artifactId>
    <version>2.0.0</version>
</dependency>
使用
String sourceTableSQL = "create table score(" +
        "id int," +
        "student_no string," +
        "class_name string," +
        "score double," +
        "primary key(id) not enforced" + // 多个联合主键用逗号分隔
        ") with (" +
        "'connector'='upsert-kafka'," +
        "'topic' = 'ods'," +
        "'properties.bootstrap.servers'='localhost:9092'," +
        "'key.format'='raw'," +
        "'value.format'='json'" +
        ")";
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容