SpringBoot+MybatisPlus+Mysql+Sharding-JDBC分库分表实践

一、序言

在实际业务中,单表数据增长较快,很容易达到数据瓶颈,比如单表百万级别数据量。当数据量继续增长时,数据的查询性能即使有索引的帮助下也不尽如意,这时可以引入数据分库分表技术。

本文将基于SpringBoot+MybatisPlus+Sharding-JDBC+Mysql实现企业级分库分表。

1、组件及版本选择
SpringBoot
MybatisPlus
Sharding-JDBC
Mysql
SpringBoot 2.6.x MybatisPlus 3.5.0 Sharding-JDBC 4.1.1 Mysql 5.7.35
2、预期目标
  • 使用上述组件实现分库分表,简化起见只讨论分表技术
  • 完成分表后的逻辑表与物理表间的增删查改
  • 引入逻辑删除和使用MybatisPlus内置分页技术

完整项目源码访问地址

二、代码实现

为了简化分表复杂性,专注于分表整体实现,简化分表逻辑:按照UserId的奇偶属性分别进行分表。以订单表这一典型场景为例,一般来说有关订单表,通常具有如下共性行为:

  • 创建订单记录
  • 查询XX用户的订单列表
  • 查询XX用户的订单列表(分页)
  • 查询XX订单详情
  • 修改订单状态
  • 删除订单(逻辑删除)

接下来通过代码实现上述目标。

(一)素材准备

1、实体类
@Data
@TableName("bu_order")
public class Order {
    @TableId
    private Long orderId;
    private Integer orderType;
    private Long userId;
    private Double amount;
    private Integer orderStatus;
    @TableLogic
    @JsonIgnore
    private Boolean deleted;
}
2、Mapper类
@Mapper
public interface OrderMapper extends BaseMapper<Order> {
}
3、全局配置文件
spring:
  config:
    use-legacy-processing: true
  shardingsphere:
    datasource:
      ds1:
        driver-class-name: com.Mysql.cj.jdbc.Driver
        type: com.alibaba.druid.pool.DruidDataSource
        url: jdbc:mysql://127.0.0.1:3306/sharding-jdbc2?serverTimezone=UTC
        username: root
        password: 123456
      names: ds1
    props:
      SQL:
        show: true
    sharding:
      tables:
        bu_order:
          actual-data-nodes: ds1.bu_order_$->{0..1}
          key-generator:
            column: order_id
            type: SNOWFLAKE
          table-strategy:
            inline:
              algorithm-expression: bu_order_${user_id%2}
              sharding-column: user_id

(二)增删查改

1、保存数据

由于依据主键的奇偶属性对原表分表,分表后每张表的数据量是分表前的二分之一。根据需要也可以自定义分表数量(比如10张),新分表后的数据量是不分表前的十分之一。

@Test
public void addOrders() {
    for (long i = 1; i <= 10; i++) {
        Order order = new Order();
        order.setOrderId(i);
        order.setOrderType(RandomUtil.randomEle(Arrays.asList(1, 2)));
        order.setUserId(RandomUtil.randomEle(Arrays.asList(101L, 102L, 103L)));
        order.setAmount(1000.0 * i);
        orderMapper.insert(order);
    }
}
2、查询列表数据

查询指定用户的订单列表。

@GetMapping("/list")
public AjaxResult list(Order order) {
    LambdaQueryWrapper<Order> wrapper = Wrappers.lambdaQuery(order);
    return AjaxResult.success(orderMapper.selectList(wrapper));
}
3、分页查询数据

分页查询指定用户的订单列表

@GetMapping("/page")
public AjaxResult page(Page<Order> page, Order order) {
    return AjaxResult.success(orderMapper.selectPage(page, Wrappers.lambdaQuery(order)));
}
4、查询详情

通过订单ID查询订单详情。

@GetMapping("/detail/{orderId}")
public AjaxResult detail(@PathVariable Long orderId) {
    return AjaxResult.success(orderMapper.selectById(orderId));
}
5、删除数据

通过订单ID删除订单(逻辑删除)

@DeleteMapping("/delete/{orderId}")
public AjaxResult delete(@PathVariable Long orderId) {
    return AjaxResult.success(orderMapper.deleteById(orderId));
}
6、修改数据

修改数据一般涉及部分列,比如修改订单表的订单状态等。

@PutMapping("/edit")
public AjaxResult edit(@RequestBody Order order) {
    return AjaxResult.success(orderMapper.updateById(order));
}

三、理论分析

1、选择分片列

选择分片列是经过精心对比后确定的,对于订单类场景,需要频繁以用户ID为查询条件筛选数据,因此将同一个用户的订单数据存放在一起有利于提高查询效率。

2、扩容

当分表后的表数据快速增长,可以预见即将达到瓶颈时,需要对分表进行扩容,扩容以2倍的速率进行,扩容期间需要迁移数据,工作量相对可控。


喜欢本文点个♥️赞♥️支持一下,如有需要,可通过微信dream4s与我联系。相关源码在GitHub,视频讲解在B站,本文收藏在博客天地


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容