Python语言学习之Python关联规则分析

本文主要介绍了Python语言学习之Python关联规则分析,通过具体的内容向大家展现,希望对大家Python的学习有所帮助。

Python语言学习之Python关联规则分析

1. 关联规则

大家可能听说过用于宣传数据挖掘的一个案例:啤酒和尿布;据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起;结果这两个品类的销量都有明显的增长;分析原因是很多刚生小孩的男士在购买的啤酒时,会顺手带一些婴幼儿用品。

不论这个案例是否是真实的,案例中分析顾客购买记录的方式就是关联规则分析法Association Rules。

关联规则分析也被称为购物篮分析,用于分析数据集各项之间的关联关系。

1.1 基本概念

项集:item的集合,如集合{牛奶、麦片、糖}是一个3项集,可以认为是购买记录里物品的集合。

频繁项集:顾名思义就是频繁出现的item项的集合。如何定义频繁呢?用比例来判定,关联规则中采用支持度和置信度两个概念来计算比例值

支持度:共同出现的项在整体项中的比例。以购买记录为例子,购买记录100条,如果商品A和B同时出现50条购买记录(即同时购买A和B的记录有50),那边A和B这个2项集的支持度为50% 。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以价位@762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~

Python语言学习之Python关联规则分析

置信度:购买A后再购买B的条件概率,根据贝叶斯公式,可如下表示:

Python语言学习之Python关联规则分析

提升度:为了判断产生规则的实际价值,即使用规则后商品出现的次数是否高于商品单独出现的评率,提升度和衡量购买X对购买Y的概率的提升作用。如下公式可见,如果X和Y相互独立那么提升度为1,提升度越大,说明X->Y的关联性越强。

Python语言学习之Python关联规则分析

1.2 关联规则Apriori算法

关联规则方法的步骤如下:

发现频繁项集

找出关联规则

Apriori算法是经典的关联规则算法。Apriori算法的目标是找到最大的K项频繁集。Apriori算法从寻找1项集开始,通过最小支持度阈值进行剪枝,依次寻找2项集,3项集直到没有更过项集为止。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以价位@762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~

下面是一个案例图解:

Python语言学习之Python关联规则分析

图中有4个记录,记录项有1,2,3,4,5若干

首先先找出1项集对应的支持度(C1),可以看出4的支持度低于最小支持阈值,先剪掉(L1)。

从1项集生成2项集,并计算支持度(C2),可以看出(1,5)(1,2)支持度低于最小支持阈值,先剪掉(L2)

从2项集生成3项集,(1,2,3)(1,2,5)(2,3,5)只有(2,3,5)满足要求

没有更多的项集了,就定制迭代

2. mlxtend实战关联规则

关联规则目前在scikit-learn中并没有实现。这里介绍另一个python库mlxtend。

2.1 安装

pip install mlxtend

2.2 简单的例子

来看下数据集:

import pandas as pd

item_list = [['牛奶','面包'],

 ['面包','尿布','啤酒','土豆'],  

 ['牛奶','尿布','啤酒','可乐'],  

 ['面包','牛奶','尿布','啤酒'],  

 ['面包','牛奶','尿布','可乐']]  

item_df = pd.DataFrame(item_list)

数据格式处理,传入模型的数据需要满足bool值的格式

from mlxtend.preprocessing import TransactionEncode

te = TransactionEncoder()

df_tf = te.fit_transform(item_list)

df = pd.DataFrame(df_tf,columns=te.columns_)

Python语言学习之Python关联规则分析

计算频繁项集

from mlxtend.frequent_patterns import apriori

use_colnames=True表示使用元素名字,默认的False使用列名代表元素, 设置最小支持度min_support

frequent_itemsets = apriori(df, min_support=0.05, use_colnames=True)

frequent_itemsets.sort_values(by='support', ascending=False, inplace=True)

选择2频繁项集

print(frequent_itemsets[frequent_itemsets.itemsets.apply(lambda x: len(x)) == 2])

Python语言学习之Python关联规则分析

计算关联规则

from mlxtend.frequent_patterns import association_rules

# metric可以有很多的度量选项,返回的表列名都可以作为参数  

association_rule = association_rules(frequent_itemsets,metric='confidence',min_threshold=0.9)  

#关联规则可以提升度排序  

association_rule.sort_values(by='lift',ascending=False,inplace=True)   

association_rule  

# 规则是:antecedents->consequents  
Python语言学习之Python关联规则分析

选择出来关联规则之后,根据提升度排序后,可能最高提升度的规则是在我们常识范围内,那这个规则的价值就不高。所以我们要在产生的规则中根据业务特点进行筛选,像开篇提到(啤酒->尿布)完全不同的品类之间的关联。

笔者最近用关联规则分析用户的体检报告记录,也得出了关于各个病症的有意义的关联,如并发症,不同病症相互影响等。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以价位@762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~

3. 总结

本分介绍关联规则的基本概念和经典算法Apriori,以及python的实现库mlxtend使用。

总结如下:

关联规则用于分析数据集各项之间的关联关系,想一想啤酒和尿布的故事

三个重要概念:支持度,置信度和提升度

Apriori通过迭代先找1项集,用支持度过滤项集,逐步找出所有k项集

用置信度或提升度来选择满足的要求的规则

mlxtend对数据要求转换成bool值才可用

我是梦雅,记得找我

✅ 解锁高薪工作

✅ 免费获取学习教程,开发工具,代码大全,参考书籍

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容