4.Lock的使用

1.ReentrantLock

在Java多线程中,可以使用synchronized关键字来实现线程之间的同步互斥。但是在Java 1.5中新增了ReentrantLock类也能达到同样的效果。并且扩展了许多功能。比synchronized更加灵活。

  • 代码演示

  • 新建业务类

public class Business {
    private Lock lock = new ReentrantLock();

    public void print() {
        //lock.lock();
        for (int i = 0; i < 5; i++) {
            System.out.println(String.format("%s:%d", Thread.currentThread().getName(), i));
        }
        //lock.unlock();
    }
}
  • 新建线程A
public class ThreadA extends Thread {
    private Business business;

    public ThreadA(Business business) {
        super();
        this.business = business;
    }

    @Override
    public void run() {
        business.print();
    }
}
  • 新建线程B
public class ThreadB extends Thread {

    private Business business;

    public ThreadB(Business business){
        this.business=business;
    }

    @Override
    public void run() {
        business.print();
    }
}

  • Client
public class Client {
    public static void main(String[] args) {
        Business business = new Business();
        ThreadA a = new ThreadA(business);
        ThreadB b = new ThreadB(business);
        a.start();
        b.start();
    }
}
  • 没加锁的结果
线程B:0
线程B:1
线程B:2
线程B:3
线程B:4
线程A:0
线程A:1
线程A:2
线程A:3
线程A:4
  • 加锁后的结果
线程B:0
线程B:1
线程B:2
线程B:3
线程B:4
线程A:0
线程A:1
线程A:2
线程A:3
线程A:4

由此可看出,ReentrantLock实现了synchronized的同步的功能。lock.lock()是获取锁。lock.unlock()是释放锁。

1.1结合Condition实现wait与notify功能

关键字synchronized与wait及notify结合,可以实现等待、通知模式。而ReentrantLock与Condition结合也可以实现同样的功能。

  • 代码演示

  • 新建业务类

public class Business {
    private Lock lock = new ReentrantLock();

    private Condition condition = lock.newCondition();

    private int num;

    public void print() {
        try {
            lock.lock();
            for (int i = 0; i < 5; i++) {
                System.out.println(String.format("%s:%d", Thread.currentThread().getName(), i));
                num = i;
                if (i == 2){
                    condition.await();
                    System.out.println("接受到信号,执行完毕");
                }
            }
        } catch (Exception ex) {
            ex.printStackTrace();
        } finally {
            lock.unlock();
        }

    }

    public void notifyPrint() {
        lock.lock();
        if (num == 2)
            condition.signal();
        lock.unlock();
    }
}

  • 新建线程A
public class ThreadA extends Thread {
    private Business business;

    public ThreadA(Business business) {
        super();
        this.business = business;
    }

    @Override
    public void run() {
        business.print();
    }
}
  • 新建线程B
public class ThreadB extends Thread {

    private Business business;

    public ThreadB(Business business) {
        this.business = business;
    }

    @Override
    public void run() {
        business.notifyPrint();
    }
}
  • Client
public class Client {
    public static void main(String[] args) throws InterruptedException {
        Business business = new Business();
        ThreadA a = new ThreadA(business);
        a.setName("线程A");
        ThreadB b = new ThreadB(business);
        b.setName("线程B");
        a.start();
        Thread.sleep(2000);
        b.start();
    }
}
  • 结果
Connected to the target VM, address: '127.0.0.1:62623', transport: 'socket'
线程A:0
线程A:1
线程A:2
Disconnected from the target VM, address: '127.0.0.1:62623', transport: 'socket'
接受到信号,执行完毕
线程A:3
线程A:4

下面图标表示Object里面的类的方法与Condition类的方法对比

Object Condition
wait() await()
wait(long timeout) await(long time, TimeUnit unit)
notify() signal()
notifyAll() signalAll()

1.2 Condition的部分唤醒

在服务类中创建多个Condition实例。进行对其分组操作。

private Condition condition = lock.newCondition();

private Condition condition2 = lock.newCondition();

1.3公平锁与非公平锁

公平锁:线程获取锁的顺序是按照线程加锁的顺序来分配的。即先进先出的顺序(FIFO)。

非公平锁:获取锁的抢占机制,是随机获得锁的。

  • ReentrantLock的构造函数
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

传入true为公平锁,传入false为非公平锁。

1.4ReentrantLock及Condition其他重要方法

  • 1.getHoldCount

查询当前线程保持锁定的个数,也就是调用lock()的次数

public int getHoldCount() {
    return sync.getHoldCount();
}
  • 2.getQueueLength

计算正等待获取此锁定的线程数。比如一个线程在锁内休眠,其他9个线程正在等待,那么调用此方法返回9。

public final int getQueueLength() {
    return sync.getQueueLength();
}
  • 3.getWaitQueueLength

返回给定条件的Condition相关的等待此锁的线程数。

public int getWaitQueueLength(Condition condition) {
    if (condition == null)
        throw new NullPointerException();
    if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
        throw new IllegalArgumentException("not owner");
    return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
  • 4.hasQueuedThread

查询指定的线程是否正在等待获取此锁

public final boolean hasQueuedThread(Thread thread) {
    return sync.isQueued(thread);
}
  • 5.hasQueuedThreads

查询是否有线程正在等待获取此锁

public final boolean hasQueuedThreads() {
    return sync.hasQueuedThreads();
}
  • 6.hasWaiters

根据Condition条件去查询是否有线程正在等待获取此锁

public boolean hasWaiters(Condition condition) {
    if (condition == null)
        throw new NullPointerException();
    if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
        throw new IllegalArgumentException("not owner");
    return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
  • 7.isFair

判断是不是公平锁

public final boolean isFair() {
    return sync instanceof FairSync;
}
  • 8.isHeldByCurrentThread

查询当前是否保持锁定

public boolean isHeldByCurrentThread() {
    return sync.isHeldExclusively();
}
  • 9.isLocked

判断当前锁是否由任意线程锁定

public boolean isLocked() {
    return sync.isLocked();
}
  • 10.lockInterruptibly

如果当前线程未被中断,则获取获取锁定,(相当于lock())如果已经中断则抛出异常

public void lockInterruptibly() throws InterruptedException {
    sync.acquireInterruptibly(1);
}
  • 11.tryLock

当锁没有被其他线程占用,则获取锁定。

public boolean tryLock() {
    return sync.nonfairTryAcquire(1);
}
  • 12.tryLock(long timeout, TimeUnit unit)

在给定的时间内,锁没有被其他线程占用,则获取锁

public boolean tryLock(long timeout, TimeUnit unit)
        throws InterruptedException {
    return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
  • 13.awaitUninterruptibly

线程在等待的时候,线程若主动抛出异常,则相对应的程序也不会抛出异常。

public final void awaitUninterruptibly() {
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    boolean interrupted = false;
    while (!isOnSyncQueue(node)) {
        LockSupport.park(this);
        if (Thread.interrupted())
            interrupted = true;
    }
    if (acquireQueued(node, savedState) || interrupted)
        selfInterrupt();
}
  • 14.awaitUntil

某线程在指定的时间内处于等待状态,超过时间,自动运行线程。

public final boolean awaitUntil(Date deadline)
        throws InterruptedException {
    long abstime = deadline.getTime();
    if (Thread.interrupted())
        throw new InterruptedException();
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    boolean timedout = false;
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        if (System.currentTimeMillis() > abstime) {
            timedout = transferAfterCancelledWait(node);
            break;
        }
        LockSupport.parkUntil(this, abstime);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null)
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
    return !timedout;
}

2.ReentrantReadWriteLock

ReentrantLock具有完全互斥排他的效果,即同一时间只有一个线程在执行ReentrantLock.Lock()方法后面的任务。

这样虽然保证了实例变量的线程安全性,但是效率却是低下的。这时候就诞生了读写锁ReentrantReadWriteLock。

读写锁有两个锁:

  • 1.共享锁:读操作相关的锁
  • 2.排他锁:写操作相关的锁
private ReentrantReadWriteLock lock1 = new ReentrantReadWriteLock();

lock1.writeLock().lock();
lock1.writeLock().unlock();

lock1.readLock().lock();
lock1.readLock().unlock();

同一个类中,有两个及两个以上的方法。一个使用读锁,一个使用写锁。那么它们是互斥的。只有所有的方法是读锁,才是不相互干扰,不排斥的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容