kafka java 生产消费程序demo示例

kafka是吞吐量巨大的一个消息系统,它是用scala写的,和普通的消息的生产消费还有所不同,写了个demo程序供大家参考。kafka的安装请参考官方文档。

首先我们需要新建一个maven项目,然后在pom中引用kafka jar包,引用依赖如下:

<dependency>  
    <groupId>org.apache.kafka</groupId>  
    <artifactId>kafka_2.10</artifactId>  
    <version>0.8.0</version>  
</dependency>

旧版scala写法, 下面我们看下生产消息的代码:

package com.iaiai;  
  
import java.util.Properties;  
  
import kafka.javaapi.producer.Producer;  
import kafka.producer.KeyedMessage;  
import kafka.producer.ProducerConfig;  
  
/** 
 * Hello world! 
 * 
 */  
public class KafkaProducer   
{  
    private final Producer<String, String> producer;  
    public final static String TOPIC = "TEST-TOPIC";  
  
    private KafkaProducer(){  
        Properties props = new Properties();  
        //此处配置的是kafka的端口  
        props.put("metadata.broker.list", "192.168.193.148:9092");  
  
        //配置value的序列化类  
        props.put("serializer.class", "kafka.serializer.StringEncoder");  
        //配置key的序列化类  
        props.put("key.serializer.class", "kafka.serializer.StringEncoder");  
  
        //request.required.acks  
        //0, which means that the producer never waits for an acknowledgement from the broker (the same behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails).  
        //1, which means that the producer gets an acknowledgement after the leader replica has received the data. This option provides better durability as the client waits until the server acknowledges the request as successful (only messages that were written to the now-dead leader but not yet replicated will be lost).  
        //-1, which means that the producer gets an acknowledgement after all in-sync replicas have received the data. This option provides the best durability, we guarantee that no messages will be lost as long as at least one in sync replica remains.  
        props.put("request.required.acks","-1");  
  
        producer = new Producer<String, String>(new ProducerConfig(props));  
    }  
  
    void produce() {  
        int messageNo = 1000;  
        final int COUNT = 10000;  
  
        while (messageNo < COUNT) {  
            String key = String.valueOf(messageNo);  
            String data = "hello kafka message " + key;  
            producer.send(new KeyedMessage<String, String>(TOPIC, key ,data));  
            System.out.println(data);  
            messageNo ++;  
        }  
    }  
  
    public static void main( String[] args )  
    {  
        new KafkaProducer().produce();  
    }  
}

最新的java版写法:

package com.iaiai;

import kafka.producer.KeyedMessage;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
import java.util.Random;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

/**
 * Created with IntelliJ IDEA.
 * Package: com.iaiai.db.service.impl
 * Author: iaiai
 * Create Time: 16/10/3 下午12:57
 * QQ: 176291935
 * Url: http://iaiai.iteye.com
 * Email: 176291935@qq.com
 * Description: 生产消息
 */
public class KafkaProducer {

    private final org.apache.kafka.clients.producer.KafkaProducer<String, String> producer;
    public final static String TOPIC = "TEST-TOPIC";

    private KafkaProducer(){
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.1.111:9092");
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
//        props.put(ProducerConfig.ACKS_CONFIG)

        //request.required.acks
        //0, which means that the producer never waits for an acknowledgement from the broker (the same behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails).
        //1, which means that the producer gets an acknowledgement after the leader replica has received the data. This option provides better durability as the client waits until the server acknowledges the request as successful (only messages that were written to the now-dead leader but not yet replicated will be lost).
        //-1, which means that the producer gets an acknowledgement after all in-sync replicas have received the data. This option provides the best durability, we guarantee that no messages will be lost as long as at least one in sync replica remains.
//        props.put("request.required.acks","-1");

        producer = new org.apache.kafka.clients.producer.KafkaProducer<String, String>(props);
    }

    void produce() {
        int messageNo = 1;
        final int COUNT = 2;

        while (messageNo < COUNT) {
            String key = String.valueOf(messageNo);
            String data = "hello kafka message " + key;
            boolean sync = false;   //是否同步

            if (sync) {
                try {
                    producer.send(new ProducerRecord<String, String>(TOPIC, data)).get();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            } else {
                producer.send(new ProducerRecord<String, String>(TOPIC, data));
            }

            //必须写下面这句,相当于发送
            producer.flush();

            messageNo ++;
        }
    }

    public static void main( String[] args ) {
        new KafkaProducer().produce();
    }

}

下面是消费端的代码实现:

package com.iaiai;  
  
import java.util.HashMap;  
import java.util.List;  
import java.util.Map;  
import java.util.Properties;  
  
import kafka.consumer.ConsumerConfig;  
import kafka.consumer.ConsumerIterator;  
import kafka.consumer.KafkaStream;  
import kafka.javaapi.consumer.ConsumerConnector;  
import kafka.serializer.StringDecoder;  
import kafka.utils.VerifiableProperties;  
  
public class KafkaConsumer {  
  
    private final ConsumerConnector consumer;  
  
    private KafkaConsumer() {  
        Properties props = new Properties();  
        //zookeeper 配置  
        props.put("zookeeper.connect", "192.168.193.148:2181");  
  
        //group 代表一个消费组  
        props.put("group.id", "jd-group");  
  
        //zk连接超时  
        props.put("zookeeper.session.timeout.ms", "4000");  
        props.put("zookeeper.sync.time.ms", "200");  
        props.put("auto.commit.interval.ms", "1000");  
        props.put("auto.offset.reset", "smallest");  
        //序列化类  
        props.put("serializer.class", "kafka.serializer.StringEncoder");  
  
        ConsumerConfig config = new ConsumerConfig(props);  
  
        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);  
    }  
  
    void consume() {  
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();  
        topicCountMap.put(KafkaProducer.TOPIC, new Integer(1));  
  
        StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());  
        StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties());  
  
        Map<String, List<KafkaStream<String, String>>> consumerMap =   
                consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder);  
        KafkaStream<String, String> stream = consumerMap.get(KafkaProducer.TOPIC).get(0);  
        ConsumerIterator<String, String> it = stream.iterator();  
        while (it.hasNext())  
            System.out.println(it.next().message());  
    }  
  
    public static void main(String[] args) {  
        new KafkaConsumer().consume();  
    }  
}

注意消费端需要配置成zk的地址,而生产端配置的是kafka的ip和端口。

欢迎加入QQ群:104286694

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,642评论 18 139
  • kafka的定义:是一个分布式消息系统,由LinkedIn使用Scala编写,用作LinkedIn的活动流(Act...
    时待吾阅读 5,314评论 1 15
  • 发行说明 - Kafka - 版本1.0.0 以下是Kafka 1.0.0发行版中解决的JIRA问题的摘要。有关该...
    全能程序猿阅读 2,854评论 2 7
  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,467评论 0 34
  • 这个连接器提供了对由Apache Kafka提供的事件流的访问。 Flink 提供了特殊的Kafka Connec...
    写Bug的张小天阅读 21,434评论 2 17