PS:在网上看到的案例进行学习
1、分析秒杀业务流程
2、利用 Redis 缓存 INCR拦截流量
- 首先通过数据控制模块,提前将秒杀商品缓存到读写分离 Redis,并设置秒杀开始标记如下:
skuId_start: 0 开始标记,0表示秒杀还没开始
skuId_count: 10000 表示总数
skuId_access: 12000 表示接受抢购数
秒杀开始前,服务集群读取 skuId_start 为 0,直接返回未开始。之所以设置这个值而不是根据时间判断是否开始,是因为服务时间可能不一致(相差几百毫秒)这样可能导致流量倾斜(其他服务没开始,会将大量的流量堆积到开始的服务上)
数据控制模块将 skuId_start 改为1,标志秒杀开始。
当接受下单数达到 skuId_count*1.2 后,继续拦截所有请求。
3、利用 Redis 缓存加速库存扣量
- skuId_booked: 0 表示没有抢购
4、 将用户订单数据写入mq
5、监听mq入库
6、代码实现
- SeckillService.java
@Service
public class SeckillService {
private static final String secStartPrefix = "skuId_start_"; //一开始要在redis初始化0_1554045087
private static final String secAccess = "skuId_access_";
private static final String secCount = "skuId_count_"; //一开始要在redis初始化数量“0”
private static final String filterName = "skuId_bloomfilter_";
private static final String bookedName = "skuId_booked_"; //一开始要在redis初始化数量“0”
@Resource
private RedisService redisService;
public String seckill(int uid, int skuId) {
//流量拦截层
//1、判断秒杀是否开始 0_1554045087 开始标识_开始时间
String isStart = (String) redisService.get(secStartPrefix + skuId);
if (StringUtils.isBlank(isStart)) {
return "还未开始";
}
if (isStart.contains("_")) {
Integer isStartInt = Integer.parseInt(isStart.split("_")[0]);
Integer startTime = Integer.parseInt(isStart.split("_")[1]);
if (isStartInt == 0) {
if (startTime > getNow()) {
return "还未开始";
} else {
//代表秒杀已经开始
redisService.set(secStartPrefix + skuId, 1 + "");
}
} else {
return "系统异常";
}
} else {
if (Integer.parseInt(isStart) != 1) {
return "系统异常";
}
}
//2、流量拦截
String skuIdAccessName = secAccess + skuId;
Integer accessNumInt = 0;
String accessNum = (String) redisService.get(skuIdAccessName);
if (StringUtils.isNotBlank(accessNum)) {
accessNumInt = Integer.parseInt(accessNum);
}
String skuIdCountName = secCount + skuId;
Integer countNumInt = Integer.parseInt((String) redisService.get(skuIdCountName));
if (countNumInt * 1.2 < accessNumInt) {
return "抢购已经完成,欢迎下次参与";
} else {
redisService.incr(skuIdAccessName);
}
//信息校验层
if (redisService.bloomFilterExists(filterName, uid)) {
return "您已经抢购过该商品,请勿重复下发!";
} else {
redisService.bloomFilterAdd(filterName, uid);
}
Boolean isSuccess = redisService.getAndIncrLua(bookedName + skuId);
if (isSuccess) {
return "恭喜您抢购成功!!!";
} else {
return "抢购结束,欢迎下次参与";
}
}
private long getNow() {
return System.currentTimeMillis() / 1000;
}
}
- 工具类 RedisService.java
@Service
public class RedisService {
@Autowired
private RedisTemplate redisTemplate;
private static double size = Math.pow(2, 32);
/**
* 写入缓存
*
* @param key
* @param offset 位 8Bit=1Byte
* @return
*/
public boolean setBit(String key, long offset, boolean isShow) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.setBit(key, offset, isShow);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存
*
* @param key
* @param offset
* @return
*/
public boolean getBit(String key, long offset) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
result = operations.getBit(key, offset);
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存
*
* @param key
* @param value
* @return
*/
public boolean set(final String key, Object value) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
redisTemplate.opsForList();
operations.set(key, value);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存
*
* @param key
* @return
*/
public Object get(final String key) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
return operations.get(key);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
/**
* 写入缓存
*
* @param key
* @param value
* @return
*/
public boolean decr(final String key, int value) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.increment(key, -value);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存
*
* @param key
* @return
*/
public boolean incr(final String key) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.increment(key, 1);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 写入缓存设置时效时间
*
* @param key
* @param value
* @return
*/
public boolean set(final String key, Object value, Long expireTime) {
boolean result = false;
try {
ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue();
operations.set(key, value);
redisTemplate.expire(key, expireTime, TimeUnit.SECONDS);
result = true;
} catch (Exception e) {
e.printStackTrace();
}
return result;
}
/**
* 批量删除对应的value
*
* @param keys
*/
public void remove(final String... keys) {
for (String key : keys) {
remove(key);
}
}
/**
* 删除对应的value
*
* @param key
*/
public void remove(final String key) {
if (exists(key)) {
redisTemplate.delete(key);
}
}
/**
* 判断缓存中是否有对应的value
*
* @param key
* @return
*/
public boolean exists(final String key) {
return redisTemplate.hasKey(key);
}
/**
* 读取缓存
*
* @param key
* @return
*/
public Object genValue(final String key) {
Object result = null;
ValueOperations<String, String> operations = redisTemplate.opsForValue();
result = operations.get(key);
return result;
}
/**
* 哈希 添加
*
* @param key
* @param hashKey
* @param value
*/
public void hmSet(String key, Object hashKey, Object value) {
HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
hash.put(key, hashKey, value);
}
/**
* 哈希获取数据
*
* @param key
* @param hashKey
* @return
*/
public Object hmGet(String key, Object hashKey) {
HashOperations<String, Object, Object> hash = redisTemplate.opsForHash();
return hash.get(key, hashKey);
}
/**
* 列表添加
*
* @param k
* @param v
*/
public void lPush(String k, Object v) {
ListOperations<String, Object> list = redisTemplate.opsForList();
list.rightPush(k, v);
}
/**
* 列表获取
*
* @param k
* @param l
* @param l1
* @return
*/
public List<Object> lRange(String k, long l, long l1) {
ListOperations<String, Object> list = redisTemplate.opsForList();
return list.range(k, l, l1);
}
/**
* 集合添加
*
* @param key
* @param value
*/
public void add(String key, Object value) {
SetOperations<String, Object> set = redisTemplate.opsForSet();
set.add(key, value);
}
/**
* 集合获取
*
* @param key
* @return
*/
public Set<Object> setMembers(String key) {
SetOperations<String, Object> set = redisTemplate.opsForSet();
return set.members(key);
}
/**
* 有序集合添加
*
* @param key
* @param value
* @param scoure
*/
public void zAdd(String key, Object value, double scoure) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
zset.add(key, value, scoure);
}
/**
* 有序集合获取
*
* @param key
* @param scoure
* @param scoure1
* @return
*/
public Set<Object> rangeByScore(String key, double scoure, double scoure1) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
redisTemplate.opsForValue();
return zset.rangeByScore(key, scoure, scoure1);
}
//第一次加载的时候将数据加载到redis中
public void saveDataToRedis(String name) {
double index = Math.abs(name.hashCode() % size);
long indexLong = new Double(index).longValue();
boolean availableUsers = setBit("availableUsers", indexLong, true);
}
//第一次加载的时候将数据加载到redis中
public boolean getDataToRedis(String name) {
double index = Math.abs(name.hashCode() % size);
long indexLong = new Double(index).longValue();
return getBit("availableUsers", indexLong);
}
/**
* 有序集合获取排名
*
* @param key 集合名称
* @param value 值
*/
public Long zRank(String key, Object value) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
return zset.rank(key, value);
}
/**
* 有序集合获取排名
*
* @param key
*/
public Set<ZSetOperations.TypedTuple<Object>> zRankWithScore(String key, long start, long end) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
Set<ZSetOperations.TypedTuple<Object>> ret = zset.rangeWithScores(key, start, end);
return ret;
}
/**
* 有序集合添加
*
* @param key
* @param value
*/
public Double zSetScore(String key, Object value) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
return zset.score(key, value);
}
/**
* 有序集合添加分数
*
* @param key
* @param value
* @param scoure
*/
public void incrementScore(String key, Object value, double scoure) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
zset.incrementScore(key, value, scoure);
}
/**
* 有序集合获取排名
*
* @param key
*/
public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithScore(String key, long start, long end) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeByScoreWithScores(key, start, end);
return ret;
}
/**
* 有序集合获取排名
*
* @param key
*/
public Set<ZSetOperations.TypedTuple<Object>> reverseZRankWithRank(String key, long start, long end) {
ZSetOperations<String, Object> zset = redisTemplate.opsForZSet();
Set<ZSetOperations.TypedTuple<Object>> ret = zset.reverseRangeWithScores(key, start, end);
return ret;
}
public Boolean bloomFilterAdd(String filterName, int value) {
DefaultRedisScript<Boolean> bloomAdd = new DefaultRedisScript<>();
bloomAdd.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterAdd.lua")));
bloomAdd.setResultType(Boolean.class);
List<Object> keyList = new ArrayList<>();
keyList.add(filterName);
keyList.add(value + "");
Boolean result = (Boolean) redisTemplate.execute(bloomAdd, keyList);
return result;
}
public Boolean bloomFilterExists(String filterName, int value) {
DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("bloomFilterExist.lua")));
bloomExists.setResultType(Boolean.class);
List<Object> keyList = new ArrayList<>();
keyList.add(filterName);
keyList.add(value + "");
Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
return result;
}
public Boolean getAndIncrLua(String key) {
DefaultRedisScript<Boolean> bloomExists = new DefaultRedisScript<>();
bloomExists.setScriptSource(new ResourceScriptSource(new ClassPathResource("secKillIncr.lua")));
bloomExists.setResultType(Boolean.class);
List<Object> keyList = new ArrayList<>();
keyList.add(key);
Boolean result = (Boolean) redisTemplate.execute(bloomExists, keyList);
return result;
}
}
- 基于 Lua 脚本实现 Spring Boot 和布隆过滤器的整合
(1)bloomFilterAdd.lua
local bloomName = KEYS[1]
local value = KEYS[2]
-- bloomFilter
local result_1 = redis.call('BF.ADD', bloomName, value)
return result_1
(2)bloomFilterExist.lua
local bloomName = KEYS[1]
local value = KEYS[2]
-- bloomFilter
local result_1 = redis.call('BF.EXISTS', bloomName, value)
return result_1
(3)secKillIncr.lua
local lockKey = KEYS[1]
-- get info
local result_1 = redis.call('GET', lockKey)
if tonumber(result_1) <10000
then
local result_2= redis.call('INCR', lockKey)
return result_1
else
return result_1
end
- 测试Controller SeckillController.java
@RestController
public class SeckillController {
@Resource
private SeckillService seckillService;
@RequestMapping("/redis/seckill")
public String secKill(int uid,int skuId){
return seckillService.seckill(uid,skuId);
}
}