抱佛脚-刷题系列之字符串

抱佛脚一时爽,一直抱佛脚一直爽!这篇文章总结常见的链表问题~
参考链接:leetcode 剑指offer

题目们


把int当作字符串反转(lc7)

  • 注意:符号为负不影响结果;要防溢出
int reverseInt(int x) {
    int y = 0;
        while (x) {
        if (abs(y) > INT_MAX / 10) return 0;
        y = y * 10 + x % 10;
        x /= 10;
    }
    return y;
}

正则表达式匹配(jz52)

  • 法一:递归
bool isMatch(string s, string p) {
    if (p.empty()) return s.empty();
    if (p.size() > 1 && p[1] == '*') {
        return isMatch(s, p.substr(2)) || (!s.empty() && (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p));
    } else {
        return !s.empty() && (s[0] == p[0] || p[0] == '.') && isMatch(s.substr(1), p.substr(1));
    }
}
  • 法二:动态规划;f[i][j]表示s的前i个和p的前j个能否匹配
bool isMatch(string s, string p) {
    int m = s.size(), n = p.size();
    vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
    dp[0][0] = true;
    for (int i = 0; i <= m; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (j > 1 && p[j - 1] == '*') {
                dp[i][j] = dp[i][j - 2] || (i > 0 && (s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]);
            } else {
                dp[i][j] = i > 0 && dp[i - 1][j - 1] && (s[i - 1] == p[j - 1] || p[j - 1] == '.');
            }
        }
    }
    return dp[m][n];
}

无重复字符的最大子串(lc3)

  • 思路:双指针;右边的指针不要往回退
int lengthOfLongestSubstring(string s) {
  int n = s.size();
  unordered_set<int> mySet;
  int j = 0, res = 0;
  for (int i = 0; i < n; ++i) {
    if (i != 0) mySet.erase(s[i - 1]);
    for (; j < n; ++j) {
      if (mySet.count(s[j])) {
        break;
      } else {
        mySet.insert(s[j]);
        res = max(res, j - i + 1);
      }
    }
  }
  return res;
}

最大回文子串(lc5)

  • 思路:遍历每一个元素,以它为中心向两边扩展
class Solution {
public:
    string longestPalindrome(string s) {
        if (s.size() < 2) return s;
        int n = s.size(), maxLen = 0, start = 0;
        for (int i = 0; i < n - 1; ++i) {
            searchPalindrome(s, i, i, start, maxLen); // 回文子串长度为奇数时
            searchPalindrome(s, i, i + 1, start, maxLen); // 回文子串长度为偶数时
        }
        return s.substr(start, maxLen);
    }
    void searchPalindrome(string s, int left, int right, int& start, int& maxLen) {
        while (left >= 0 && right < s.size() && s[left] == s[right]) {
            --left; ++right;
        }
        if (maxLen < right - left - 1) {
            start = left + 1;
            maxLen = right - left - 1;
        }
    }
};

回文子串个数(lc647)

  • 法一:递归
class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size(), res = 0;
        for (int i = 0; i < n; ++i) {
            res += count(s, i, i);
            if (i < n - 1 && s[i] == s[i + 1]) res += count(s, i, i + 1);
        }
        return res;
    }

    int count(string s, int left, int right) {
        int cnt = 0;
        while (left >= 0 && right < s.size() && s[left] == s[right]) {
            ++cnt;
            --left;
            ++right;
        }
        return cnt;
    }
};
  • 法二:动态规划
int countSubstrings(string s) {
    int n = s.size(), res = 0;
    vector<vector<bool>> dp(n, vector<bool>(n));
    for (int i = n - 1; i >= 0; --i) {
        for (int j = i; j < n; ++j) {
            dp[i][j] = (s[i] == s[j]) && (j - i <= 2 || dp[i + 1][j - 1]);
            if (dp[i][j]) ++res;
        }
    }
    return res;
}

最长有效括号(lc32)

  • 法一:记录当前左括号、右括号个数,双向遍历
int longestValidParentheses(string s) {
    int left = 0, right = 0, n = s.size(), res = 0;
    for (int i = 0; i < n; ++i) {
        if (s[i] == '(') ++left;
        else ++right;
        if (right == left) res = max(res, 2 * left);
        else if (right > left) {
            left = 0;
            right = 0;
        }
    }
    left = 0, right = 0;
    for (int i = n - 1; i >= 0; --i) {
        if (s[i] == '(') ++left;
        else ++right;
        if (right == left) res = max(res, 2 * left);
        else if (left > right) {
            left = 0;
            right = 0;
        }
    }
    return res;
}
  • 法二:用栈
int longestValidParentheses(string s) {
    int res = 0, start = 0, n = s.size();
    stack<int> st;
    for (int i = 0; i < n; ++i) {
        if (s[i] == '(') st.push(i);
        else if (s[i] == ')') {
            if (st.empty()) start = i + 1;
            else {
                st.pop();
                res = st.empty() ? max(res, i - start + 1) : max(res, i - st.top());
            }
        }
    }
    return res;
}
  • 法三:动态规划
int longestValidParentheses(string s) {
    int res = 0, n = s.size();
    vector<int> dp(n + 1);
    for (int i = 1; i <= n; ++i) {
        int j = i - 2 - dp[i - 1];
        if (s[i - 1] == '(' || j < 0 || s[j] == ')') {
            dp[i] = 0;
        } else {
            dp[i] = dp[i - 1] + 2 + dp[j];
            res = max(res, dp[i]);
        }
    }
    return res;
}

最长公共前缀(lc14)

  string longestCommonPrefix(vector<string>& strs) {
    int n = strs.size();
    if (!n) return "";
    string result = "";
    for (int i = 0; i < strs[0].size(); ++i) { // 第i位的字符
      char c = strs[0][i];
      for (int j = 1; j < strs.size(); ++j) {
        if (strs[j].size() <= i || strs[j][i] != c) return result;
      }
      result += c;
    }
    return result;
  }

简化路径(lc71)

  • 思路:把路径看做是由一个或多个"/"分割开的众多子字符串,把它们分别提取出来一一处理即可
  • 注意:用vector而不是stack!
string simplifyPath(string path) {
    vector<string> v;
    int i = 0;
    while (i < path.size()) {
        while (path[i] == '/' && i < path.size()) ++i;
        if (i == path.size()) break;
        int start = i;
        while (path[i] != '/' && i < path.size()) ++i;
        int end = i - 1;
        string s = path.substr(start, end - start + 1);
        if (s == "..") { // 处理/..的情况
            if (!v.empty()) v.pop_back(); 
        } else if (s != ".") {
            v.push_back(s);
        }
    }
    if (v.empty()) return "/";
    string res;
    for (int i = 0; i < v.size(); ++i) {
        res += '/' + v[i];
    }
    return res;
}

字符串表示的两数相加(lc415)

string addStrings(string num1, string num2) {
    int p1 = num1.size() - 1, p2 = num2.size() - 1;
    int incre = 0;
    string res = "";
    while (p1 >= 0 || p2 >= 0) {
        int val1 = p1 >= 0 ? num1[p1] - '0' : 0;
        if (p1 >= 0) --p1;
        int val2 = p2 >= 0 ? num2[p2] - '0' : 0;
        if (p2 >= 0) --p2;
        int sum = val1 + val2 + incre;
        res.insert(res.begin(), sum % 10 + '0');
        incre = sum / 10;
    }
    if (incre) res.insert(res.begin(), incre + '0');
    return res;
}

替换空格(jz2)

  • 思路:不要忘记最后的'\0',所以char* pre = str + length而不是char* pre = str + length - 1

Z字形变换(lc6)

string convert(string s, int numRows) {
    if (numRows <= 1) return s;
    string res;
    int size = 2 * numRows - 2, n = s.size();
    for (int i = 0; i < numRows; ++i) {
        for (int j = i; j < n; j += size) {
            res += s[j];
            int pos = j + size - 2 * i;
            if (i != 0 && i != numRows - 1 && pos < n) res += s[pos];
        }
    }
    return res;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。