cookbook笔记第一章

第一章 数据结构与算法

0.保留最后的n个元素。

主要是collections.deque,提供了两端都可以操作的队列。设置了参数maxlen,构造函数会新建一个固定大小的队列。当队列中的数已经达到maxlen, 会从进队列的另一端删除数据。 重点是collections.deque

1.查找最大或最小的N个元素。

这里主要讲的heapqheapq模块来建立堆结构(二叉树)。进而进行排序以及搜索。官方文档
这里只是比较了heap[k] <= heap[2*k+1] heap[k] <= heap[2*k+2] 并没有比较左子节点与右子节点的关系。这个需要确认?!

heapq.heappush(heapq,item)
将item推送到堆上,保持堆不变。

heapq.heappop(heapq)
弹出并返回堆中的最小项,保持堆不变。如果堆为空,IndexError则引发。要获取最小的项目而不弹出它,heap[0]。

heapq.heappushpop(heapq,item)
在堆上推送项目,然后弹出并返回堆中的最小项目 。合并后的操作比heappush() 单独调用后更有效heappop()。

heapq.heapify(x)列表就地生成堆。

heapq.heapreplace(heapq,item)
弹出并返回堆中的最小项,并同时推送新项。堆大小不会改变。如果堆为空,IndexError则引发。
这一步操作比heappop()后续操作更有效, heappush()并且在使用固定大小的堆时更合适。pop / push组合总是返回堆中的元素并将其替换为item。
返回的值可能大于添加的项目。如果不需要,请考虑使用heappushpop()。它的推/弹组合返回两个值中较小的一个,在堆上留下较大的值。

该模块还提供三种基于堆的通用功能。

heapq.merge(* iterables,key = None,reverse = False )
将多个已排序的输入合并为单个排序的输出(例如,合并来自多个日志文件的带时间戳的条目)。返回 排序值上的迭代器。类似sorted(itertools.chain(*iterables))但返回一个iterable,不会同时将数据全部拉入内存,并假设每个输入流已经排序(从最小到最大)。有两个可选参数,必须指定为关键字参数。key指定一个参数的键函数,用于从每个输入元素中提取比较键。默认值为 None(直接比较元素)。reverse是一个布尔值。如果设置为True,则合并输入元素,就好像每个比较都被反转一样。

heapq.nlargest(n,iterable,key = None )
返回一个列表,其中包含iterable定义的数据集中的n个最大元素 。 key(如果提供)指定一个参数的函数,该函数用于从iterable中的每个元素中提取比较键(例如, )。相当于: 。key=str.lowersorted(iterable, key=key, reverse=True)[:n]

heapq.nsmallest(n,iterable,key = None )
返回一个列表,其中包含iterable定义的数据集中的n个最小元素 。 key(如果提供)指定一个参数的函数,该函数用于从iterable中的每个元素中提取比较键(例如, )。相当于: 。key=str.lowersorted(iterable, key=key)[:n]

后两个函数对于较小的n值表现最佳。对于较大的n值,使用该sorted()函数更有效。此外,何时 n==1使用内置min()和max() 功能更有效。如果需要重复使用这些函数,请考虑将iterable转换为实际堆。

2.字典相关

2.1 defaultdict、setdefault和get

defaultdict 为不存在键设置默认的值的属性。用法是defaultdict(工厂函数)。当获取值的时候会默认返回一个工厂函数生成的值,如a = defaultdict(int), a['b']的返回值是0。 setdefault()是dict的一个方法,当获取的key不存在的时候,会设置一个默认的值,这个跟dict的get方法十分类似,区别在于setdefault()当key不存在时,在将默认值返回的同时,会将默认的值写入原字典中,get()只是将默认值返回,并不修改原来的字典的值。

2.2 字典key的顺序

2.2.1 OrderedDict() 保序字典。内部维护着一个根据键插入顺序排序的双向链表。每次当一个新的 元素插入进来的时候,它会被放到链表的尾部。对于一个已经存在的键的重复赋值不会 改变键的顺序。但值得注意得是,保序字典是普通字典大小得两倍。

2.2.2 sorted() 为根据字典的值进行排序:1. 对key进行排序 sorted(dict) 返回排序后的key的list。 2.对value排序:sorted(dict, key=lambda k:dict[key]),返回对value排序后的key的list。对value排序还有一种方法:sorted(zip(dict.values(), dict.keys)),进行key,value转换,组成元组,然后进行排序。

2.2.3 operator.itemgetter() 函数。上边的基本都对单一的dict对象进行排序。如果对list中多个dict进行单个或者多个的key进行排序,就需要用到itemgetter()方法。

from operator import itemgetter

rows = [
{'fname': 'Brian', 'lname': 'Jones', 'uid': 1003},
{'fname': 'David', 'lname': 'Beazley', 'uid': 1002},
{'fname': 'John', 'lname': 'Cleese', 'uid': 1001},
{'fname': 'Big', 'lname': 'Jones', 'uid': 1004}
]
sorted(rows, key=itemgetter('fname'))  # 可用lambda替代  sorted(row, key=lambda x:x['fname'])

# 根据多个key值进行比较
sorted(rows, key=itemgetter("fname", "lname")) # 可用lambda替代sorted(rows, key=lambda x:(x['fname'],x['lname']))
2.3 两个字典间的差异

dict.keys() 返回的是类set的视图("a set-like object providing a view on D's keys"),当源字典开始变化,视图返回的值也会随之变化。
连个字典之间可以通过 & 来获取之间的交集,通过- 来获取之间的差集。通过 | 来获取之前的并集。

3. 命名切片

slice() 函数实现切片对象,主要用在切片操作函数里的参数传递。可以被用在任何切片允许使用的地方。

4.序列中出现次数最多的元素

collections.Counter 类就是为hashable对象计数,是字典的子类,目的用来跟踪值出现的次数,它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的int(包括0和负数)。一个Counter对象就是一个字典,将元素反应到她出现的次数上,其操作跟字典基本类似。

4.1 创建Counter对象
c = Counter()  # 创建一个空的Counter类
c = Counter('gallahad')  # 从一个可iterable对象(list、tuple、dict、字符串等)创建
c = Counter({'a': 4, 'b': 2})  # 从一个字典对象创建
c = Counter(a=4, b=2)  # 从一组键值对创建
4.2 获取其中的值
>>> from collections import Counter
>>> c = Counter(a=4, b=2)  # 从一组键值对创建
>>> c.get('a')
4
>>> c['a']
4
>>> c['c'] # 如果是缺失值的话,会返回0,而不会报错
0
4.3 计数器的更新(update和subtract)
# update 是表示增加
>> c = Counter('which')
>>> c.update('witch')  # 使用另一个iterable对象更新
>>> c['h']
3
>>> d = Counter('watch')
>>> c.update(d)  # 使用另一个Counter对象更新
>>> c['h']
4

#subtract 减去
>>> c = Counter('which')
>>> c.subtract('witch')  # 使用另一个iterable对象更新
>>> c['h']
1
>>> d = Counter('watch')
>>> c.subtract(d)  # 使用另一个Counter对象更新
>>> c['a']
-1
4.4 键的删除
>>> c = Counter("abcdcba")
>>> c
Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
>>> c["b"] = 0
>>> c
Counter({'a': 2, 'c': 2, 'd': 1, 'b': 0})
>>> del c["a"]
>>> c
Counter({'c': 2, 'b': 2, 'd': 1})
4.5 算数和集合操作
>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d  # c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d  # subtract(只保留正数计数的元素)
Counter({'a': 2})
>>> c & d  # 交集:  min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d  # 并集:  max(c[x], d[x])
Counter({'a': 3, 'b': 2})

5.通过某个字段将记录分组

itertools.groupby() 函数扫描整个序列并且查找连续相同值 (或者根据指定 key 函数返回值
相同) 的元素序列。在每次迭代的时候,它会返回一个值和一个迭代器对象,这个迭代
器对象可以生成元素值全部等于上面那个值的组中所有对象, 一个非常重要的准备步骤是要根据指定的字段将数据排序。groupby()仅仅检查连续的元素。

6.过滤序列元素

itertools.compress()它以一个 iterable
对象和一个相对应的 Boolean 选择器序列作为输入参数。然后输出 iterable 对象中
对应选择器为 True 的元素。当你需要用另外一个相关联的序列来过滤某个序列的时
候,这个函数是非常有用的。

compress() 函数的关键在于,需要先创建一个Boolean的序列。通过true映射相对应的值。返回一个迭代器。

from itertools import compress

addresses = ['5412 N CLARK', '5148 N CLARK', '5800 E 58TH', '2122 N CLARK', '5645 N RAVENSWOOD', '1060 W ADDISON',
             '4801 N BROADWAY', '1039 W GRANVILLE',
             ]

counts = [1, 2, 3, 4, 5, 6, 7, 8]

list(compress(addresses, [n > 5 for n in counts]))

7.ChainMap()

ChainMap()类 接受多个dict并将它们在逻辑上变为一个字典,通过链的方式将多个 dict“链”在一起,从而允许程序可直接获取任意一个 dict 所包含的 key 对应的 value。简单来说,ChainMap 相当于把多个 dict 合并成一个大的 dict,但实际上底层并未真正合并这些 dict,因此程序无须调用多个 update() 方法将多个 dict 进行合并。由于 ChainMap 只是将多个 dict 链在一起,并未真正合并它们,因此在多个 dict 中完全可能具有重复的 key,在这种情况下,排在“链”前面(下标小的)的 dict 中的 key 具有更高的优先级。

ChainMap()通过parents返回新的ChainMap()类来切换优先级,通过new_child()方法来创建新的最高级空dict。其他的方法和操作字典类似。值得注意的是,keys()方法和values()方法返回的值是去重后的。

8.namedtuple 具名元组

collection.namedtuple 是一个工厂函数。它可以用来构建一个带字段名的元组和一个有名字的类——这个带名字的类对调试程序有很大帮助。而且用namedtuple构建的类的实例所消耗的内存和元组是一样的, 因为字段名都被存在对应的类里面。

>>> from collections import namedtuple
>>> Beijing = namedtuple('Beijing', ['dongcheng', 'xicheng'])
>>> beijing = Beijing("001","002")
>>> beijing
Beijing(dongcheng='001', xicheng='002')
>>> beijing[0] # 取值
'001'
>>> beijing[1] # 取值
'002'
>>> beijing.dongcheng
'001'
>>> beijing._fields # 类方法,显示类的属性
('dongcheng', 'xicheng')
>>> beijing._asdict() # 转换成保序字典
OrderedDict([('dongcheng', '001'), ('xicheng', '002')])
>>> beijing._replace(dongcheng = '003') # 替换,返回新的具名元组
Beijing(dongcheng='003', xicheng='002')

9.用bisect来管理已排序的序列官方文档

bisect模块包含两个主要的函数:bisectinsort 用来二分查找(返回的是对插入点的下标)和有序队列插入数据(插入后数据仍保序)。

>>> import bisect
>>> a = [1,3,2,4,8,6]
>>> a.sort()
>>> a
[1, 2, 3, 4, 6, 8]
>>> bisect.bisect(a, 5) # bisect 等同于bisect_right 返回插入点的下标
4
>>> a.insert(4, 5)
>>> a
[1, 2, 3, 4, 5, 6, 8]
>>> bisect.insort(a, 7) # insort 等同于 insort_right 保序插入数值
>>> a
[1, 2, 3, 4, 5, 6, 7, 8]
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容

  • 内置函数Python解释器内置了许多功能和类型,总是可用的。他们是按字母顺序列在这里。 abs(x)返回一个数的绝...
    uangianlap阅读 1,234评论 0 0
  • 1. 迭代对象解压赋值 解压赋值操作可以应用到任何迭代对象上,如:列表、元组、字符串、文件对象、迭代器、生成器。 ...
    faris_shi阅读 1,109评论 0 0
  • # Python关键字 部分单词没有分类整理按照顺序整理的 ``` statements语句 print输出 qu...
    ZhouLang阅读 588评论 0 0
  • 什么是更好的感情?让我们都成为更好的自己。什么是更好的自己?就是纯良的自己,诚恳的自己,磊落的自己。人生的最后,我...
    SKADE阅读 384评论 0 8
  • 嗨,异类的小伙伴们,大家好!我是爱尚,坐标河南南阳。从事质量检验工作,同时我也是一位二宝妈妈。今天,我要分享的主题...
    爱尚_c631阅读 156评论 0 0