http://mi.eng.cam.ac.uk/projects/segnet/#demo
lr_mult:学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如有两个lr_mult,则第一个表示权值w的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
layers {
name: "fc8"
type: "InnerProduct"
blobs_lr: 1 # learning rate multiplier for the filters
blobs_lr: 2 # learning rate multiplier for the biases
weight_decay: 1 # weight decay multiplier for the filters
weight_decay: 0 # weight decay multiplier for the biases
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
bottom: "fc7"
top: "fc8"
---------------------
作者:One__Coder
来源:CSDN
原文:https://blog.csdn.net/github_37973614/article/details/81810327
版权声明:本文为博主原创文章,转载请附上博文链接!