phrase matching搜索技术

近似匹配

1、什么是近似匹配

两个句子

java is my favourite programming language, and I also think spark is a very good big data system.
java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.

match query,搜索java spark

{
    "match": {
        "content": "java spark"
    }
}

match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是离的很近

包含java或包含spark,或包含java和spark的doc,都会被返回回来。我们其实并不知道哪个doc,java和spark距离的比较近。如果我们就是希望搜索java spark,中间不能插入任何其他的字符,那这个时候match去做全文检索,能搞定我们的需求吗?答案是,搞不定。

如果我们要尽量让java和spark离的很近的document优先返回,要给它一个更高的relevance score,这就涉及到了proximity match,近似匹配

如果说,要实现两个需求:

1、java spark,就靠在一起,中间不能插入任何其他字符,就要搜索出来这种doc
2、java spark,但是要求,java和spark两个单词靠的越近,doc的分数越高,排名越靠前

要实现上述两个需求,用match做全文检索,是搞不定的,必须得用proximity match,近似匹配

phrase match,proximity match:短语匹配,近似匹配

这一讲,要学习的是phrase match,就是仅仅搜索出java和spark靠在一起的那些doc,比如有个doc,是java use'd spark,不行。必须是比如java spark are very good friends,是可以搜索出来的。

phrase match,就是要去将多个term作为一个短语,一起去搜索,只有包含这个短语的doc才会作为结果返回。不像是match,java spark,java的doc也会返回,spark的doc也会返回。

2、match_phrase

GET /forum/article/_search
{
  "query": {
    "match": {
      "content": "java spark"
    }
  }
}

单单包含java的doc也返回了,不是我们想要的结果

POST /forum/article/5/_update
{
  "doc": {
    "content": "spark is best big data solution based on scala ,an programming language similar to java spark"
  }
}

将一个doc的content设置为恰巧包含java spark这个短语

match_phrase语法

GET /forum/article/_search
{
    "query": {
        "match_phrase": {
            "content": "java spark"
        }
    }
}

成功了,只有包含java spark这个短语的doc才返回了,只包含java的doc不会返回

3、term position

hello world, java spark doc1
hi, spark java doc2

hello doc1(0)
wolrd doc1(1)
java doc1(2) doc2(2)
spark doc1(3) doc2(1)

了解什么是分词后的position

GET _analyze
{
  "text": "hello world, java spark",
  "analyzer": "standard"
}

4、match_phrase的基本原理

索引中的position,match_phrase

hello world, java spark doc1
hi, spark java doc2

hello doc1(0)
wolrd doc1(1)
java doc1(2) doc2(2)
spark doc1(3) doc2(1)

java spark --> match phrase

java spark --> java和spark

java --> doc1(2) doc2(2)
spark --> doc1(3) doc2(1)

要找到每个term都在的一个共有的那些doc,就是要求一个doc,必须包含每个term,才能拿出来继续计算

doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好满足条件

doc1符合条件

doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不满足,那么doc2不匹配

必须理解这块原理!!!!

因为后面的proximity match就是原理跟这个一模一样!!!

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容