用户画像概述

什么是用户画像?

用户画像就是使用产品的用户形象,通过描述用户与产品有关联的相关属性特征,例如外貌特征、工作职业、使用习惯、行为偏好、等的用户信息。建立用户画像也就是给用户在这些用户信息打上“标签”。

例如:

用户A、男、20-30岁、短发、籍贯江西、常住地址上海、160-170cm、70-80kg、未婚、白领职员、地铁出行、早出晚归、周日单休、使用电脑上班、坐着上班、

用户B、女、20-30岁、长发、籍贯湖南、常住地址深圳、150-160cm、40-50kg、未婚、辅导班教师、地铁出行、早出晚归、周一周二双休、不用电脑上班、站着上班、

这时对用户画像有一个大致的理解了,那么为什么建设这种用户画像呢?

为什么要建设用户画像?

在互联网进入大数据时代,企业在经营中产生了海量的数据,此时需要将大量的原始数据中的挖掘出有用的数据,可以利用这些数据进行分析和评估,发现经营中的一些问题,减少经营中浪费,更加精准地营销客户,是定向广告投放与个性化推荐的前置条件,为数据驱动运营奠定了基础。

并且还可以通过用户画像的挖掘,甄别出高风险的用户,帮助企业风险控制。

还可以划分不同的用户群体,进行更加精准的需求分析与挖掘。

应该怎么去做?

根据不同企业的业务,定义业务上需要关注的标签,例如:用户的性别、年龄、收入情况、消费档次等等,都可以指导业务帮助决策。

定义标签有三种方式:

1、统计标签

所有可以统计的数据量,例如:下单数,7天内登录次数,停留时长;

根据业务场景,达到一定的数量可以定义对应的规则,

例如:

下单数超过了100单,就定义为“忠实用户”,给他打上标签,对他进行推荐、营销。

7天内登录次数超过了70次,定义为“活跃用户”。


2、规则标签

基于一定用户行为、数量对比,再结合业务确定一下个规则,达到这个规则就打上这种标签。

例如:

一个用户点击“女妆类”、“女妆类”、“女鞋”、“女性内衣”的商品次数一共超过30次,同时收藏数超过了10,那么就定义该用户为“女性”。


3、挖掘标签

根据某些属性或某些行为进行预判

例如:连续三年的1月份,前三周都会有大量的订单需求,那么暂且判定,第四年也会出现这种情况。


接下来会学习和研究用户画像的标签开发流程,标签存在的数据结构,如何落地等等方面。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351