[Keras] 使用Keras调用多GPU,并保存模型

官方文档对于如何调用多GPU已经说的很清楚:multi_gpu_model,但仍有些细节,值得探讨:

keras.utils.multi_gpu_model(model, gpus)

将模型在多个GPU上复制

特别地,该函数用于单机多卡的数据并行支持,它按照下面的方式工作:
(1)将模型的输入分为多个子batch
(2)在每个设备上调用各自的模型,对各自的数据集运行
(3)将结果连接为一个大的batch(在CPU上)
例如,你的batch_size是64而gpus=2,则输入会被分为两个大小为32的子batch,在两个GPU上分别运行,通过连接后返回大小为64的结果。 该函数线性的增加了训练速度,最高支持8卡并行。

*该函数只能在tf后端下使用

参数如下:

  • model: Keras模型对象,为了避免OOM错误(内存不足),该模型应在CPU上构建,参考下面的例子。
  • gpus: 大或等于2的整数,要并行的GPU数目。
    该函数返回Keras模型对象,它看起来跟普通的keras模型一样,但实际上分布在多个GPU上。

例子:

import tensorflow as tf
from keras.applications import Xception
from keras.utils import multi_gpu_model
import numpy as np

num_samples = 1000
height = 224
width = 224
num_classes = 1000

# Instantiate the base model
# (here, we do it on CPU, which is optional).
with tf.device('/cpu:0'):
    model = Xception(weights=None,
                     input_shape=(height, width, 3),
                     classes=num_classes)

# Replicates the model on 8 GPUs.
# This assumes that your machine has 8 available GPUs.
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss='categorical_crossentropy',
                       optimizer='rmsprop')

# Generate dummy data.
x = np.random.random((num_samples, height, width, 3))
y = np.random.random((num_samples, num_classes))

# This `fit` call will be distributed on 8 GPUs.
# Since the batch size is 256, each GPU will process 32 samples.
parallel_model.fit(x, y, epochs=20, batch_size=256)

但是在parallel_model.fit()结束后,使用代码parallel_model.save()保存却出现错误:

parallel_model.save('test.h5')
Traceback (most recent call last):

  File "<ipython-input-13-8d4461a4551e>", line 1, in <module>
    parallel_model.save('test.h5')

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.py", line 2556, in save
    save_model(self, filepath, overwrite, include_optimizer)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/models.py", line 107, in save_model
    'config': model.get_config()

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.py", line 2397, in get_config
    return copy.deepcopy(config)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 230, in _deepcopy_list
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 264, in _deepcopy_method
    return type(x)(x.im_func, deepcopy(x.im_self, memo), x.im_class)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 230, in _deepcopy_list
    y.append(deepcopy(a, memo))

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 298, in _deepcopy_inst
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
    y = _reconstruct(x, rv, 1, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
    state = deepcopy(state, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
    y = copier(x, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
    y[deepcopy(key, memo)] = deepcopy(value, memo)

  File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 182, in deepcopy
    rv = reductor(2)

TypeError: can't pickle thread.lock objects

这个问题困扰了我很久,最后在 keras-team/keras/issues#8446&issues#8253找到正解。
不过当时提问者报错为:

TypeError: can’t pickle module objects

与我的TypeError: can't pickle thread.lock objects大同小异,解决方法如下:


意思就是直接使用传入方法keras.utils.multi_gpu_model(model, gpus)中的model即可,而不要使用返回的parallel_model,即:

model.save('xxx.h5')
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容

  • List: 运行Python脚本时显示Badfile:File is not a zip file? 如何查看Ke...
    DexterLei阅读 3,831评论 0 1
  • 声明:作者翻译论文仅为学习,如有侵权请联系作者删除博文,谢谢! 翻译论文汇总:https://github.com...
    SnailTyan阅读 12,283评论 1 27
  • 前些日,相识多年的旧友来京,在三里屯的小酒吧内,喝着小酒,谈论着大家的近况,也怀恋起从前一起玩乐的日子,恍如隔世一...
    菲克斯阅读 249评论 0 0
  • 你从春天来 温暖了整个春季 冰雪开始融化,沁入江河,泛起一阵阵涟漪; 柳树开始发芽,点点绿意,随风飘荡,摇曳; 桃...
    怀瑾姑娘阅读 464评论 3 1
  • 有记忆以来的至少三十年,我从来没有忘记过妈妈的生日,从参加工作起,我就早早的思考好,该送什么礼物,该怎么陪妈妈过生...
    悦和天使阅读 772评论 0 0