DESeq2和TopGO的R代码

library(DESeq2)

library(ggplot2)

#library(ggrepel)

raw.data1<-read.table("feature_count_combo4DESeq2.tab", check.names = FALSE, header=T, row.names = 1)

#raw.data1 <- raw.data1[ rowSums(raw.data1) > 1, ]

#dim(raw.data1)

#raw.data1 <- replace(raw.data1, raw.data1 == 0, 1)

idx_col = grep("FN_45|LN_45", colnames(raw.data1), perl=TRUE)

raw.data_sub <- raw.data1[,idx_col]

sam_info <- gsub("_[12]$", "", colnames(raw.data_sub), perl = T)

colData  <- data.frame(LN = sam_info)

rownames(colData) = colnames(raw.data_sub)

dds <- DESeqDataSetFromMatrix(countData = raw.data_sub,

                              colData = colData,

                              design =~ LN)

colData(dds)$LN = factor(colData(dds)$LN,levels=c("FN_45", "LN_45"))

dds <- DESeq(dds)

res <- results(dds)

## Generate the table

resOrd<-res[order(res$padj),]

res1_table<-as.data.frame(resOrd)

res1_table$fc<-2^res1_table$log2FoldChange ##generate the FC column

res1_table$gene_id = rownames(res1_table)

res1_table<-res1_table[,c(8,1,2,7,3,4,5,6)]

res1_table_noNA <- res1_table[complete.cases(res1_table), ]

res1_table_sig <- res1_table_noNA[res1_table_noNA$padj < 0.05, ]

geneid_sig <- gsub("-RA$", "", rownames(res1_table_sig), perl=T)

library(topGO)

geneID2GO <- readMappings("/media/xie186/easystore/WIC/project/danshen_RNA_seq_metabolomcis/data/GO_KEGG_info/salvia_cds_GO4topGO.tab")

GO2geneID <- inverseList(geneID2GO)

gene_number_GO = do.call(rbind, lapply(GO2geneID, function(x) length(x)))

geneNames <- names(geneID2GO)

geneList <- factor(as.integer(geneNames %in% geneid_sig))

names(geneList) <- geneNames

GOdata <- new("topGOdata", ontology = "MF", allGenes = geneList,

              nodeSize = 5,  #It is often the case that many GO terms which have few annotated genes are detected to be significantly

              #enriched due to artifacts in the statistical test. These small sized GO terms are of less importance for the

              #analysis and in many cases they can be omitted. By using the nodeSize argument the user can control the

              #size of the GO terms used in the analysis. Once the genes are annotated to the each GO term and the true

              #path rule is applied the nodes with less than nodeSize annotated genes are removed from the GO hierarchy.

              #We found that values between 5 and 10 for the nodeSize parameter yield more stable results. The default

              #value for the nodeSize parameter is 1, meaning that no pruning is performed.

              annot = annFUN.gene2GO, gene2GO = geneID2GO)

### The list of genes of interest can be accessed using the method sigGenes():

#sg <- sigGenes(GOdata)

#str(sg)

#numSigGenes(GOdata)

resultFisher <- runTest(GOdata, algorithm = "classic", statistic = "fisher")

resultKS <- runTest(GOdata, algorithm = "classic", statistic = "ks")

resultKS.elim <- runTest(GOdata, algorithm = "elim", statistic = "ks")

#allRes <- GenTable(GOdata, classicFisher = resultFisher,

#                    classicKS = resultKS, elimKS = resultKS.elim,

#                    orderBy = "elimKS", ranksOf = "classicFisher", topNodes = 10)

allRes <- GenTable(GOdata,

                  classicFisher = resultFisher,

                  #classicKS = resultKS,

                  #elimKS = resultKS.elim,

                  orderBy = "classicFisher", ranksOf = "elimKS", topNodes = length(attributes(resultKS.elim)$score))

#We can visualise the position of the statistically significant GO terms

#in the GO hierarchy by using the following functions:

showSigOfNodes(GOdata, score(resultKS.elim), firstSigNodes = 5, useInfo = 'all')

#The second command makes a pdf file ("tGO_classic_5_all.pdf") with the picture.

#The significant GO terms are shown as rectangles in the picture. The most significant

#terms are coloured red and least significant in yellow:

printGraph(myGOdata, resultFisher, firstSigNodes = 5, fn.prefix = "tGO", useInfo = "all", pdfSW = TRUE)

myterms <- allRes$GO.ID

mygenes <- genesInTerm(GOdata, myterms)

allRes$gene.list = rep(NA, length(allRes$GO.ID))

for (i in 1:length(myterms))

{

  myterm <- myterms[i]                      ## get the term

  mygenesforterm <- mygenes[myterm][[1]]    # get the genes list

  myfactor <- mygenesforterm %in% geneid_sig # find the genes that are in the list of genes of interest

  mygenesforterm2 <- mygenesforterm[myfactor == TRUE]    ## get the genes

  mygenesforterm2 <- paste(mygenesforterm2, collapse=',')

  allRes$gene.list[i] = mygenesforterm2

  #print(paste("Term",myterm,"genes:",mygenesforterm2))

}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355