项目背景
由于本人在重庆从事数据分析工作,故这次先爬取Boss直聘的本地区数据分析岗信息,并进行分析
爬取思路
由于Boss直聘搜索职位不需要登陆,所以不涉及模拟登陆、cookies的问题,但是由于他会对同一时间访问过于频繁的ip进行验证,故而需要使用ip池。
整理思路大致如下:
1.使用ip池ip,boss首页搜索关键词,得到职位列表
2.根据职位列表中的url,分别爬取每个职位的详细数据
3.将爬取信息保存在mongo数据库内
网页代码分析
首先进入Boss直聘官网,搜索关键词“数据”,如图所示
职位列表网址:Boss直聘重庆地区数据岗位列表
分析网站源代码,发现十分的规整:打开其中一个职位详情页面,里面就是这次所需要爬取的信息。
源代码
import time
import random
import requests
import pymongo
import pymysql
import urllib.parse
from lxml import etree
class mongodb(object):
def __init__(self):
self.client = pymongo.MongoClient('mongodb://localhost:27017/')
self.db = self.client.test_db
self.collection = self.db.jobs
def insert(self, data_dic):
result = self.collection.insert_one(data_dic)
return result
class boss(object):
def __init__(self, word, page, proxies):
self.url = 'https://www.zhipin.com/c101040100/?query={0}&page={1}&ka=page-{2}'
self.page = page
self.word = word
self.proxy = random.choice(proxies)
self.job = []
self.header = {
'accept': 'application/json, text/javascript, */*; q=0.01',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'zh-CN,zh;q=0.9',
'referer': 'https://www.zhipin.com/job_detail/?query=%E6%95%B0%E6%8D%AE&scity=101040100&industry=&position=',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36',
'x-requested-with': 'XMLHttpRequest'
}
def get(self):
key_word = urllib.parse.quote(self.word)
html_url = self.url.format(key_word, self.page, self.page)
data = requests.get(html_url, headers=self.header, proxies=self.proxy)
html = etree.HTML(data.text)
url_list = html.xpath('//div[@class ="job-list"]//li//div[@class = "info-primary"]//a//@href')
for i in url_list:
data_dic = {}
d_url = 'https://www.zhipin.com' + i
res = requests.get(d_url, headers=self.header)
d_html = etree.HTML(res.text)
data_dic['id'] = str(self.page) + i.split('/')[1]
data_dic['time'] = str(d_html.xpath('//div[@class="job-author"]//text()'))[5:21]
data_dic['name'] = d_html.xpath('//div[@class="job-banner"]//div[@class="name"]//h1//text()')
data_dic['salary'] = str(
d_html.xpath('//div[@class="job-banner"]//div[@class="name"]//span//text()')).replace(" ", "").replace(
'\\n', '')
data_dic['request'] = d_html.xpath('//div[@class="job-banner"]//p//text()')
data_dic['tags'] = d_html.xpath('//div[@class="job-banner"]//div[@class="job-tags"]//span//text()')
data_dic['company'] = d_html.xpath('//div[@class="job-banner"]//h3[@class="name"]//text()')
data_dic['describe'] = d_html.xpath('//div[@class="job-sec"]//text()')
self.job.append(data_dic)
time.sleep(random.random() * 0.56)
return self.job
class ip(object):
def __init__(self, db, table):
self.db = db
self.table = table
self.usable_ip = []
def get_ip(self):
conn = pymysql.connect(host='localhost', user='root', password='HzH951126', db=self.db, charset='utf8')
cur = conn.cursor()
sql = 'SELECT * FROM '+str(self.table)
cur.execute(sql)
ip_pool = cur.fetchall()[:30]
conn.close()
for i in ip_pool:
proxies = {
i[2].lower(): i[2].lower() + '://' + i[0] + ':' + str(i[1])
}
try:
check = requests.get('https://www.baidu.com', proxies=proxies, timeout=15)
if check.status_code == 200:
self.usable_ip.append(proxies)
else:
pass
except:
pass
return self.usable_ip
if __name__ == '__main__':
word = '数据'
page = '3'
sql_db = 'spiders'
sql_table = 'ip'
mg = mongodb()
ip = ip(sql_db, sql_table)
for p in range(1, 11):
boss_data = boss(word, 3, ip.get_ip())
for d in boss_data.get():
mg.insert(d)
print(str(p)+' Finished')
print('Spider Finished')
结果展示
爬取第三页作为示例,NoSQL数据库存储这些数据还是非常方便。
目前我们已经完成了数据的爬取,下一篇文章,我准备进行重庆地区数据岗招聘情况的数据分析报告。