查找的四种算法比较

顺序查找、二分查找、二叉搜索树、Hash表

1. 顺序查找

设想有一个1M的数据,我们如何在里面找到我们想要的那个数据。此时数据本身没有特征,所以我们需要的那个数据可能出现在数组的各个位置,可能在数据的开头位置,也可能在数据的结束位置。这种性质要求我们必须对数据进行遍历之后才能获取到对应的数据。

int find(int array[], int len, int val)
{
    if(array == NULL && length == 0)    return -1;
    for(int i=0;i<len;i++){
        if(val == array[i])
            return i;
    }
    return -1;
}

分析:由于我们不清楚这个数据判断究竟需要多少次。但是,我们知道,这样一个数据查找最少需要1次,那么最多需要n次,平均下来可以看成是(1+n)/2,差不多是n的一半。我们把这种比较次数和n成正比的算法复杂度记为o(n)。


2. 二分查找

如果数据排列地非常整齐,那结果会是什么样的呢?就像在生活中,如果平时不注意收拾整齐,那么找东西的时候非常麻烦,效率很低;但是一旦东西放的位置固定下来,所有东西都归类放好,那么结果就不一样了,我们就会形成思维定势,这样查找东西的效率就会非常高。那么,对一个有序的数组,我们应该怎么查找呢?二分法就是最好的方法。

int BinaryFind(int array[], int len, int val)
{
    if(array == NULL && length == 0)    return -1;
    int start = 0, end = len-1, middle=0;
    while(start<=end){
        middle = (start + end)/2;
        if(val == array[middle])    return middle;
        else if(val > array[middle])    start = middle+1;
        else end = middle-1;
    }
    return -1;
}

分析:上面我们说到普通的数据查找算法复杂度是o(n)。那么我们可以用上面一样的方法判断一下算法复杂度。这种方法最少是1次,那么最多需要多少次呢?我们发现最多需要log(n+1)/log(2)即可。


3. 二叉搜索树

二叉搜索树是二分查找的二叉树实现,二叉搜索树每个结点都有作为搜索依据的关键码,,所有结点的管家吗互不相同;左子树(若存在)上的所有结点的关键码都小于根结点的关键码;右子树(若存在)上的所有结点的关键码都大于根结点的关键码;左子树和右子树也是二叉搜索树。

typedef struct _NODE
{
    int data;
    struct _NODE* left;
    struct _NODE* right;
}NODE;

const NODE* find_data(const NODE* pNode, int data){
    if(NULL == pNode)
        return NULL;

    if(data == pNode->data)
        return pNode;
    else if(data < pNode->data)
        return find_data(pNode->left, data);
    else
        return find_data(pNode->right, data);       
}

4. Hash表

typedef struct _LINK_NODE
{
    int data;
    struct _LINK_NODE* next;
}LINK_NODE;

LINK_NODE* hash_find(LINK_NODE* array[], int mod, int data)
{
    int index = data % mod;
    if(NULL == array[index])
        return NULL;

    LINK_NODE* pLinkNode = array[index];
    while(pLinkNode){
        if(data == pLinkNode->data)
            return pLinkNode;
        pLinkNode = pLinkNode->next;
    }

    return pLinkNode;
}

分析:hash表因为不需要排序,只进行简单的归类,在数据查找的时候特别方便。查找时间的大小取决于mod的大小。mod越小,那么hash查找就越接近于普通查找;那么hash越大呢,那么hash一次查找成功的概率就大大增加。

一步一步写算法(之查找)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 原文出处:http://www.cnblogs.com/maybe2030/p/4715035.html引文出处:...
    明教de教主阅读 9,234评论 0 7
  • 课程介绍 先修课:概率统计,程序设计实习,集合论与图论 后续课:算法分析与设计,编译原理,操作系统,数据库概论,人...
    ShellyWhen阅读 2,383评论 0 3
  • B树的定义 一棵m阶的B树满足下列条件: 树中每个结点至多有m个孩子。 除根结点和叶子结点外,其它每个结点至少有m...
    文档随手记阅读 13,415评论 0 25
  • 第一章 绪论 什么是数据结构? 数据结构的定义:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 第二章...
    SeanCheney阅读 5,844评论 0 19
  • 1. 链表 链表是最基本的数据结构,面试官也常常用链表来考察面试者的基本能力,而且链表相关的操作相对而言比较简单,...
    Mr希灵阅读 1,487评论 0 20