揭开Spark Streaming神秘面纱④ - job 的提交与执行

前文揭开Spark Streaming神秘面纱③ - 动态生成 job
我们分析了 JobScheduler 是如何动态为每个 batch生成 jobs,本文将说明这些生成的 jobs 是如何被提交的。

在 JobScheduler 生成某个 batch 对应的 Seq[Job] 之后,会将 batch 及 Seq[Job] 封装成一个 JobSet 对象,JobSet 持有某个 batch 内所有的 jobs,并记录各个 job 的运行状态。

之后,调用JobScheduler#submitJobSet(jobSet: JobSet)来提交 jobs,在该函数中,除了一些状态更新,主要任务就是执行

jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))

即,对于 jobSet 中的每一个 job,执行jobExecutor.execute(new JobHandler(job)),要搞懂这行代码干了什么,就必须了解 JobHandler 及 jobExecutor。

JobHandler

JobHandler 继承了 Runnable,为了说明与 job 的关系,其精简后的实现如下:

private class JobHandler(job: Job) extends Runnable with Logging {
  import JobScheduler._

  def run() {
    _eventLoop.post(JobStarted(job))
    PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
      job.run()
    }
    _eventLoop = eventLoop
    if (_eventLoop != null) {
      _eventLoop.post(JobCompleted(job))
    }
  }

}

JobHandler#run 方法主要执行了 job.run(),该方法最终将调用到
揭开Spark Streaming神秘面纱③ - 动态生成 job

中的『生成该 batch 对应的 jobs的Step2 定义的 jobFunc』,jonFunc 将提交对应 RDD DAG 定义的 job。

JobExecutor

知道了 JobHandler 是用来执行 job 的,那么 JobHandler 将在哪里执行 job 呢?答案是
jobExecutor,jobExecutor为 JobScheduler 成员,是一个线程池,在JobScheduler 主构造函数中创建,如下:

private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)
private val jobExecutor = ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")

JobHandler 将最终在 线程池jobExecutor 的线程中被调用,jobExecutor的线程数可通过spark.streaming.concurrentJobs配置,默认为1。若配置多个线程,就能让多个 job 同时运行,若只有一个线程,那么同一时刻只能有一个 job 运行。

以上,即 jobs 被执行的逻辑。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容