导数压轴题分析与解——2018年全国卷理数1

(12 分) 已知函数 f(x)=\dfrac{1}{x}-x+a \ln x.
(1) 讨论 f(x) 的单调性;
(2) 若 f(x) 存在两个极点 x_{1}, x_{2}, 证明: \dfrac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}<a-2.


(1) f^{\prime}(x)=-\dfrac{1}{x^{2}}-1+\dfrac{a}{x}=-\dfrac{x^{2}-a x+1}{x^{2}}(x>0)

法一:直接讨论x^2-ax+1的符号

a \leq 0 时, f^{\prime}(x)<0 ,此时 f(x)(0,+\infty) 上单调递减;
a>0 时,令 g(x)=x^{2}-a x+1 ,判别式 \Delta=a^{2}-4
¡) 当 \Delta \leq 0 时,此时 0<a \leq 2, \quad g(x) \geq 0, 从而 f^{\prime}(x) \leq 0f(x)(0,+\infty) 上单调递減;
ii) 当 \Delta>0 时,此时 a>2 ,设 g(x)=0 的两根为 x_{1}, x_{2}, 且 x_{1}<x_{2}, 利用求根公式得
x_{1}=\dfrac{a-\sqrt{a^{2}-4}}{2}>0, \quad x_{2}=\dfrac{a+\sqrt{a^{2}-4}}{2}>0
x \in\left(0, x_{1}\right),\left(x_{2},+\infty\right), g(x)>0, 从而 f^{\prime}(x)<0, f(x)\left(0, x_{1}\right)\left(x_{2},+\infty\right) 单调递減;
x \in\left(x_{1}, x_{2}\right), \quad g(x)<0, 从而 f^{\prime}(x)>0, 此时 f(x)\left(x_{1}, x_{2}\right) 上单调递增.
综上所述,当 a \leq 2 时, f(x)(0,+\infty) 上单调递減;

a>2 时 , f(x)\left(0, \dfrac{a-\sqrt{a^{2}-4}}{2}\right)\left(\dfrac{a+\sqrt{a^{2}-4}}{2},+\infty\right)上单调递减 ,在 \left(\dfrac{a-\sqrt{a^{2}-4}}{2}, \dfrac{a+\sqrt{a^{2}-4}}{2}\right) 上单调递增. ​


法二:对x^2-ax+1分参

x^2-ax+1=0,得a=x+\dfrac{1}{x},数形结合知

a\leq 2时,a\leq x+\dfrac{1}{x},则x^2-ax+1\geq 0,从而f^{\prime}(x)\leq 0,此时 f(x)(0,+\infty) 上单调递减;

a>2时,由a= x+\dfrac{1}{x},解得x_{1}=\dfrac{a-\sqrt{a^{2}-4}}{2}, \quad x_{2}=\dfrac{a+\sqrt{a^{2}-4}}{2},则

f(x)\left(0, \dfrac{a-\sqrt{a^{2}-4}}{2}\right)\left(\dfrac{a+\sqrt{a^{2}-4}}{2},+\infty\right)上单调递减 ,在 \left(\dfrac{a-\sqrt{a^{2}-4}}{2}, \dfrac{a+\sqrt{a^{2}-4}}{2}\right) 上单调递增.


(2)

法一

由(1)可知,若 f(x) 有两个极值点,则 a>2 ,且 f^{\prime}(x)=0 的两根即为 x_{1}, x_{2}\left(x_{1}<x_{2}\right)且满足韦达定理 x_{1}+x_{2}=a, \quad x_{1} x_{2}=1 .

易得 0<x_{1}<1, \quad x_{2}>1, \quad x_{1}=\dfrac{1}{x_{2}}

\dfrac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}=\dfrac{f(\dfrac{1}{x_2})-f(x_2)}{\dfrac{1}{x_2}-x_2}=\dfrac{2f(x_2)}{x_2-\dfrac{1}{x_2}}
若要证 \dfrac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}<a-2, 只须证 2 f\left(x_{2}\right)<(a-2)\left(x_{2}-\dfrac{1}{x_{2}}\right)
整理得 2 \ln x_{2}- x_{2}+\dfrac{1}{x_{2}}<0 \quad\left(x_{2}>1\right)
构造函数 h(x)=2 \ln x- x+\dfrac{1}{x}(x>1) ,求导得 h^{\prime}(x)=\dfrac{2 }{x}-1-\dfrac{1}{x^{2}}=-\dfrac{(x-1)^{2}}{x^{2}} \leq 0
因此 h(x)(1,+\infty) 上单调递滅 , \therefore h(x)<h(1)=0, 从而 2 \ln x_{2}- x_{2}+\dfrac {1}{x_{2}}<0 \quad\left(x_{2}>1\right)成立,原式得证。


法二

\dfrac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}} =\dfrac{\dfrac{1}{x_{2}}-x_{2}+a \ln x_{2}-\left(\dfrac{1}{x_{1}}-x_{1}+a \ln x_{1}\right)}{x_{2}-x_{1}} =\dfrac{\dfrac{x_{1}-x_{2}}{x_{1} x_{2}}-\left(x_{2}-x_{1}\right)+a\left(\ln x_{2}-\ln x_{1}\right)}{x_{2}-x_{1}}
=-\dfrac{1}{x_{1} x_{2}}-1+\dfrac{a\left(\ln x_{2}-\ln x_{1}\right)}{x_{2}-x_{1}} =-2+\dfrac{a\left(\ln x_{2}-\ln x_{1}\right)}{x_{2}-x_{1}}

要证\dfrac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}<a-2, 只须证\dfrac{\ln x_{2}-\ln x_{1}}{x_{2}-x_{1}}<1

这里思路又有两个

思路一

\dfrac{\ln x_{2}-\ln x_{1}}{x_{2}-x_{1}}<1\Leftrightarrow \ln \dfrac{x_{2}}{x_{1}}<x_{2}-x_{1}

由于x_{1}=\dfrac{1}{x_{2}}, 上式可转化为 \ln x_{2}^{2}=2 \ln x_{2}<x_{2}-\dfrac{1}{x_{2}} \Leftrightarrow 2 \ln x_{2}-x_{2}+\dfrac{1}{x_{2}}<0

构造函数 p(x)=2 \ln x-x+\dfrac{1}{x}(x>1), 则 p^{\prime}(x)=\dfrac{2}{x}-1-\dfrac{1}{x^{2}}=-\dfrac{(x-1)^{2}}{x^{2}} \leq 0, 故 p(x)<p(1)=0,原结论得证.

思路二

联系到对数均值不等式\forall a>b>0, a \neq b, \quad \sqrt{a b}<\dfrac{a-b}{\ln a-\ln b}<\dfrac{a+b}{2},有\dfrac{\ln x_{2}-\ln x_{1}}{x_{2}-x_{1}}>\dfrac{1}{\sqrt{x_1x_2}}=1.

则把问题转化为证明对数均值不等式的基本问题,这个不等式请自己证明,网上随便一搜,也能找到.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。