Java五种单例模式实现的深入分析

大家在Java在实现单例时常用的有:饿汉模式、懒汉模式、双重锁懒汉模式DCL(Double Check Lock)、静态内部类模式、枚举模式,五种模式,

1.饿汉式:

public class Singleton {
    private static Singleton INSTANCE = new Singleton();
    private Singleton(){}
    public static Singleton getInstance(){
        return INSTANCE;
    }
}

INSTANCE是用static修饰的所以它在类的初始化时,就会在内存中创建对象,
饿汉式是线程安全的,但是它是以空间换时间,所以不推荐

2.懒汉模式

public class Singleton {
    private static Singleton INSTANCE = null;
    private Singleton(){}
    public static Singleton getInstance(){
        if (INSTANCE==null){
            INSTANCE = new Singleton();
        }
        return INSTANCE;
    }
}

懒汉模式在方法被调用后才创建对象,以时间换空间,在多线程环境下存在风险

3.双重锁懒汉模式DCL(Double Check Lock)

public class Singleton {
    private static Singleton INSTANCE = null;

    private Singleton() {}

    public static Singleton getInstance() {
        //先检查实例是否存在,如果不存在才进入下面的同步块,减少加锁
        if (INSTANCE == null) {
            //同步块,线程安全的创建实例
            synchronized (Singleton.class) {
                //再次检查实例是否存在,如果不存在才真正的创建实例
                if (INSTANCE == null) {
                    INSTANCE = new Singleton();
                }
            }
        }
        return INSTANCE;
    }
}

DCL模式的优点就是,只有在对象需要被使用时才创建,第一次判断 INSTANCE == null为了避免非必要加锁,当第一次加载时才对实例进行加锁再实例化。这样既可以节约内存空间,又可以保证线程安全。
重点来了:DCL真的能安全吗??
由于jvm存在乱序执行功能,DCL也会出现线程不安全的情况。具体分析如下:
首先我们看一下这行代码
INSTANCE = new Singleton();
这个步骤,其实在jvm里面的执行分为三步:
1.在堆内存开辟内存空间。
2.在堆内存中实例化SingleTon里面的各个参数。
3.把对象指向堆内存空间。

由于jvm存在乱序执行功能,所以在多核CPU上可能在2还没执行时就先执行了3,如果此时再被切换到线程B上,由于执行了3,INSTANCE 已经非空了,会被直接拿出来用,这样的话,就会出现异常。这个就是著名的DCL失效问题。

JDK1.6之后,具体化了volatile,只要定义使用volatile 修饰INSTANCE 就可解决DCL失效问题。volatile确保INSTANCE每次均在主内存中读取,(但是使用volatile修饰某一个变量并不会使它变得线程)这样虽然会牺牲一点效率,但是是可以接受的。

public class Singleton {
    private volatile static SingleTon INSTANCE = null;
    private Singleton() {}

    public static Singleton getInstance() {
        //先检查实例是否存在,如果不存在才进入下面的同步块,减少加锁
        if (INSTANCE == null) {
            //同步块,线程安全的创建实例
            synchronized (Singleton.class) {
                //再次检查实例是否存在,如果不存在才真正的创建实例
                if (INSTANCE == null) {
                    INSTANCE = new Singleton();
                }
            }
        }
        return INSTANCE;
    }
}

4.静态内部类模式

public class Singleton {
    private Singleton() {
    }

    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }

    private static class SingletonHolder{
        private static final Singleton INSTANCE = new Singleton();
    }
}

静态内部类的优点是:外部类与内部类的加载没有关联,外部类加载时并不需要立即加载内部类,内部类不被加载则不去初始化INSTANCE,故而不占内存。即当SingleTon第一次被加载时,并不需要去加载SingleTonHolder,只有当getInstance()方法第一次被调用时,才会去初始化INSTANCE,第一次调用getInstance()方法会导致虚拟机加载SingleTonHolder类,这种方法不仅能确保线程安全,也能保证单例的唯一性,同时也延迟了单例的实例化。

这里我们要说一下类加载时机:JAVA虚拟机只有在5种场景下会对类进行初始化。
1.遇到new、getstatic、setstatic或者invikestatic这4个字节码指令时,对应的java代码场景为:new一个关键字或者一个实例化对象时、读取或设置一个静态字段时(final修饰、已在编译期把结果放入常量池的除外)、调用一个类的静态方法时。
2.使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没进行初始化,需要先调用其初始化方法进行初始化。
3.当初始化一个类时,如果其父类还未进行初始化,会先触发其父类的初始化。
4.当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的类),虚拟机会先初始化这个类。
5.当使用JDK 1.7等动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。
这5种情况被称为是类的主动引用,那么,除此之外的所有引用类都不会对类进行初始化,称为被动引用。静态内部类就属于被动引用的行列。

我们再回头看下getInstance()方法,调用的是SingleTonHoler.INSTANCE,取的是SingleTonHoler里的INSTANCE对象,跟上面那个DCL方法不同的是,getInstance()方法并没有多次去new对象,故不管多少个线程去调用getInstance()方法,取的都是同一个INSTANCE对象,而不用去重新创建。当getInstance()方法被调用时,SingleTonHoler才在SingleTon的运行时常量池里,把符号引用替换为直接引用,这时静态对象INSTANCE也真正被创建,然后再被getInstance()方法返回出去,这点同饿汉模式。那么INSTANCE在创建过程中又是如何保证线程安全的呢?

虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个进程阻塞(需要注意的是,其他线程虽然会被阻塞,但如果执行<clinit>()方法后,其他线程唤醒之后不会再次进入<clinit>()方法。同一个加载器下,一个类型只会初始化一次。)。

故而,可以看出INSTANCE在创建过程中是线程安全的,所以说静态内部类形式的单例可保证线程安全,也能保证单例的唯一性,同时也延迟了单例的实例化。

那么,是不是可以说静态内部类单例就是最完美的单例模式了呢?其实不然,静态内部类也有着一个致命的缺点,就是传参的问题,由于是静态内部类的形式去创建单例的,故外部无法传递参数进去,例如Context这种参数,所以,我们创建单例时,可以在静态内部类与DCL模式里自己斟酌。

5.枚举模式

public enum SingleTon{
  INSTANCE;
        public void method(){
        //TODO
     }
}

枚举在java中与普通类一样,都能拥有字段与方法,而且枚举实例创建是线程安全的,在任何情况下,它都是一个单例。我们可直接以SingleTon.INSTANCE的方式调用

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容