前情回顾:
Gephi网络图极简教程
Network在单细胞转录组数据分析中的应用
网络数据统计分析笔记|| 为什么研究网络
网络数据统计分析笔记|| 操作网络数据
网络数据统计分析笔记|| 网络数据可视化
网络数据统计分析笔记|| 网络数据的描述性分析
网络数据统计分析笔记||网络图的数学模型
网络数据统计分析笔记|| 网络图的统计模型
网络数据统计分析笔记|| 网络拓扑结构推断
网络数据统计分析笔记|| 网络图上的过程建模与预测
动态网络(Dynamic Networks)是指加上时间戳的网络,包含时序网络和切片网络两种类型。其中时序网络是指网络从初始状态不断演化的情况。切片网络要简单一些,就是由一组切片构成的动态网络。
# CHUNK 1
library(sand)
data(hc)
# CHUNK 2
head(hc)
# ---
## Time ID1 ID2 S1 S2
## 1 140 15 31 MED ADM
## 2 160 15 22 MED MED
## 3 500 15 16 MED MED
## 4 520 15 16 MED MED
## 5 560 16 22 MED MED
## 6 580 16 22 MED MED
# ---
# CHUNK 3
ID.stack <- c(hc$ID1,hc$ID2)
Status.stack <- c(as.character(hc$S1),
as.character(hc$S2))
my.t <- table(ID.stack,Status.stack)
v.status <- character(nrow(my.t))
for(i in (1:length(v.status))){
v.status[i] <- names(which(my.t[i,]!=0))
}
table(v.status)
# ---
## v.status
## ADM MED NUR PAT
## 8 11 27 29
# ---
# CHUNK 4
status.t <- table(hc$S1,hc$S2)
status.t <- status.t + t(status.t)
diag(status.t) <- round(diag(status.t)/2)
status.t
# ---
## ADM MED NUR PAT
## ADM 279 459 2596 441
## MED 459 5660 1769 1471
## NUR 2596 1769 12695 6845
## PAT 441 1471 6845 209
# ---
# CHUNK 5
tmp.es <- paste(hc$S1,"-",hc$S2,sep="")
e.status <- character(dim(hc)[[1]])
e.status[tmp.es=="ADM-ADM"] <- "ADM-ADM"
e.status[tmp.es=="MED-MED"] <- "MED-MED"
e.status[tmp.es=="NUR-NUR"] <- "NUR-NUR"
e.status[tmp.es=="PAT-PAT"] <- "PAT-PAT"
e.status[(tmp.es=="ADM-MED") |
(tmp.es=="MED-ADM")] <- "ADM-MED"
e.status[(tmp.es=="ADM-NUR") |
(tmp.es=="NUR-ADM")] <- "ADM-NUR"
e.status[(tmp.es=="ADM-PAT") |
(tmp.es=="PAT-ADM")] <- "ADM-PAT"
e.status[(tmp.es=="MED-NUR") |
(tmp.es=="NUR-MED")] <- "MED-NUR"
e.status[(tmp.es=="MED-PAT") |
(tmp.es=="PAT-MED")] <- "MED-PAT"
e.status[(tmp.es=="NUR-PAT") |
(tmp.es=="PAT-NUR")] <- "NUR-PAT"
my.hc <- data.frame(Time = hc$Time/(60*60),
ID1 = hc$ID1,
ID2 = hc$ID2,
Status = e.status)
library(lattice)
histogram(~Time|Status, data=my.hc, xlab="Hours",
layout=c(5,2))
# CHUNK 6
vids <- sort(unique(c(hc$ID1, hc$ID2)))
g.week <- graph_from_data_frame(hc[, c("ID1", "ID2",
"Time")], vertices=data.frame(vids),
directed=FALSE)
E(g.week)$Time <- E(g.week)$Time / (60 * 60)
# CHUNK 7
summary(g.week)
# ---
## IGRAPH ab0ca23 UN-- 75 32424 --
## + attr: name (v/c), Time (e/n)
# ---
# CHUNK 8
status <- unique(rbind(data.frame(id=hc$ID1,
status=hc$S1), data.frame(id=hc$ID2, status=hc$S2)))
V(g.week)$Status <-
as.character(status[order(status[,1]),2])
# CHUNK 9
E(g.week)$weight <- 1
g.week.wgtd <- simplify(g.week)
summary(g.week.wgtd)
# ---
## IGRAPH 09000d9 UNW- 75 1139 --
## + attr: name (v/c), Status (v/c), weight (e/n)
# ---
# CHUNK 10
is_simple(g.week.wgtd)
# ---
## [1] TRUE
# ---
# CHUNK 11
summary(E(g.week.wgtd)$weight)
# ---
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.00 8.00 28.47 23.00 1059.00
# ---
# CHUNK 12
g.week.96 <- subgraph.edges(g.week,
E(g.week)[Time <= 96])
# CHUNK 13
g.sl12 <- lapply(1:8, function(i) {
g <- subgraph.edges(g.week,
E(g.week)[Time > 12*(i-1) &
Time <= 12*i],
delete.vertices=FALSE)
simplify(g)
})
# CHUNK 14
sapply(g.sl12,vcount)
# ---
## [1] 75 75 75 75 75 75 75 75
# ---
# CHUNK 15
sapply(g.sl12,ecount)
# ---
## [1] 179 294 257 282 265 314 197 305
# ---
# CHUNK 16
library(networkDynamic)
# CHUNK 17
hc.spls <- cbind((hc$Time-20)/(60*60),
hc$Time/(60*60),
hc$ID1,hc$ID2)
hc.dn <- networkDynamic(edge.spells=hc.spls)
# CHUNK 18
is.active(hc.dn,onset=0,terminus=1,e=c(1))
# ---
## [1] TRUE
# ---
is.active(hc.dn,onset=1,terminus=2,e=c(1))
# ---
## [1] FALSE
# ---
# CHUNK 19
get.edge.activity(hc.dn,e=c(1))
# ---
## [[1]]
## [,1] [,2]
## [1,] 0.03333333 0.03888889
# ---
# CHUNK 20
get.edge.activity(hc.dn,e=c(10))
# ---
## [[1]]
## [,1] [,2]
## [1,] 0.800000 0.8055556
## [2,] 1.355556 1.3611111
## [3,] 1.505556 1.5111111
## [4,] 24.894444 24.9055556
## [5,] 25.005556 25.0166667
## [6,] 25.388889 25.3944444
## [7,] 25.500000 25.5055556
# ---
# CHUNK 21
g.sl12.dN <- get.networks(hc.dn,start=0,end=96,
time.increment=12)
# CHUNK 22
hc.dn.df <- as.data.frame(hc.dn)
names(hc.dn.df)
# ---
## [1] "onset" "terminus"
## [3] "tail" "head"
## [5] "onset.censored" "terminus.censored"
## [7] "duration" "edge.id"
# ---
# CHUNK 23
summary(hc.dn.df$duration)
# ---
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.005556 0.005556 0.005556 0.012833 0.011111 1.088889
# ---
# CHUNK 24
detach(package:networkDynamic)
set.seed(42)
l = layout_with_fr(g.week.wgtd)
v.cols <- character(75)
v.cols[V(g.week.wgtd)$Status=="ADM"] <- "yellow"
v.cols[V(g.week.wgtd)$Status=="MED"] <- "blue"
v.cols[V(g.week.wgtd)$Status=="NUR"] <- "green"
v.cols[V(g.week.wgtd)$Status=="PAT"] <- "black"
plot(g.week.wgtd, layout=l, vertex.size=3,
edge.width=2*(E(g.week.wgtd)$weight)/100,
vertex.color=v.cols,vertex.label=NA,)
opar <- par()
par(mfrow=c(2,4),
mar=c(0.5, 0.5, 0.5, 0.5),
oma=c(0.5, 1.0, 0.5, 0))
for(i in (1:8)) {
plot(g.sl12[[i]], layout=l, vertex.size=5,
edge.width=2*(E(g.week.wgtd)$weight)/1000,
vertex.color=v.cols,vertex.label=NA)
title(paste(12*(i-1),"to",12*i,"hrs"))
}
par(opar)
# Establish colors for edge status.
tmp.es <- paste(v.status[hc.dn.df$tail],"-",
v.status[hc.dn.df$head],sep="")
mycols <- numeric(nrow(hc.dn.df))
mycols[tmp.es=="ADM-ADM"] <- 1
mycols[tmp.es=="MED-MED"] <- 2
mycols[tmp.es=="NUR-NUR"] <- 3
mycols[tmp.es=="PAT-PAT"] <- 4
mycols[(tmp.es=="ADM-MED") | (tmp.es=="MED-ADM")] <- 5
mycols[(tmp.es=="ADM-NUR") | (tmp.es=="NUR-ADM")] <- 6
mycols[(tmp.es=="ADM-PAT") | (tmp.es=="PAT-ADM")] <- 7
mycols[(tmp.es=="MED-NUR") | (tmp.es=="NUR-MED")] <- 8
mycols[(tmp.es=="MED-PAT") | (tmp.es=="PAT-MED")] <- 9
mycols[(tmp.es=="NUR-PAT") | (tmp.es=="PAT-NUR")] <- 10
my.palette <- rainbow(10)
# Produce plot.
ne <- max(hc.dn.df$edge.id)
max.t <- max(hc.dn.df$terminus)
plot(c(0,max.t),c(0,ne),ann=F,type='n')
segments(hc.dn.df$onset,hc.dn.df$edge.id,
hc.dn.df$terminus,hc.dn.df$edge.id,
col=my.palette[mycols])
title(xlab="Time (hours)",
ylab="Interacting Pair
(Ordered by First Interaction)")
clip(0,max.t,0,ne)
abline(v=c(11,35,59,83),lty="dashed",lw=2,
col="lightgray")
# Add legend to plot.
status.pairs <- c("ADM-ADM","MED-MED","NUR-NUR",
"PAT-PAT", "ADM-MED","ADM-NUR","ADM-PAT",
"MED-NUR", "MED-PAT","NUR-PAT")
legend(7,1140,status.pairs,
text.col=my.palette[(1:10)],cex=0.7)
动态网络的特征化
all.deg <- sapply(g.sl12,degree)
sl.lab<- sapply(1:8, function(i)
paste(12*(i-1), "-", 12*i, "hrs", sep=""))
deg.df <- data.frame(Degree=as.vector(all.deg),
Slice = rep(sl.lab,each=75),
Status = rep(V(g.week)$Status, times=8))
library(ggplot2)
p = qplot(factor(Degree), data=deg.df,
geom="bar",fill=Status)
p+facet_grid(Slice~.) + xlab("Degree") + ylab("Count")
# CHUNK 28
top.deg <- lapply(1:8,function(i) {
all.deg[,i][rank(all.deg[,i])>=70]
})
table(unlist(lapply(1:8,function(i)
as.numeric(names(top.deg[[i]])))))
# ---
## 1 5 7 8 10 11 13 15 17 19 21 22 23 24 25 26 27 29 31
## 2 2 4 1 1 2 2 4 3 3 2 1 3 2 1 2 2 2 1
## 34 36 37 63 64
## 1 1 2 1 2
# ---
# CHUNK 29
V(g.week)$Status[c(7,15)]
# ---
## [1] "NUR" "MED"
# ---
# CHUNK 30
all.str <- sapply(g.sl12,strength)
all.r <- all.str/all.deg
round(all.r[c(7,15),],digits=2)
# ---
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## 7 2.00 25.79 11.1 32.73 14.20 33.19 8.33 37.34
## 15 29.71 26.33 17.0 12.48 19.27 15.30 19.40 12.93
# ---
# CHUNK 31
summary(c(all.r))
# ---
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.00 5.00 10.43 12.06 15.73 47.35 261
# ---
# CHUNK 32
sp.len <- lapply(1:8, function(i) {
spl <- distances(g.sl12[[i]],v=c(7,15),
to=V(g.sl12[[i]]),
weights=NA)
spl[spl==Inf] <- NA
spl
})
ave.spl <- sapply(1:8,function(i)
apply(sp.len[[i]],1,mean,na.rm=T))
round(ave.spl,digits=2)
# ---
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## 7 3.05 1.27 1.79 1.12 1.80 1.33 2.00 1.24
## 15 1.72 1.51 2.48 1.35 1.36 1.26 1.61 1.36
# ---
# CHUNK 33
sapply(g.sl12,diameter)
# ---
## [1] 9 8 26 28 10 10 10 10
# ---
# CHUNK 34
round(sapply(g.sl12,mean_distance),digits=2)
# ---
## [1] 2.12 1.70 1.81 1.67 1.79 1.70 1.91 1.78
# ---
动态网络建模目前尚且不易。因为引入时间,新问题中的组合爆炸也是一个重要原因。
https://www.zhihu.com/question/265008836
https://zhuanlan.zhihu.com/p/148190973
https://www.ccs.neu.edu/home/rraj/Talks/DynamicNetworks/DYNAMO/IntroDynamicNetworks.pdf
https://briatte.github.io/ggnet/
https://link.springer.com/referencework/10.1007/978-1-4614-7163-9
https://blog.csdn.net/tanzhangwen/article/details/8262017