求素数个数

我最近在leetcode上撸了一个小算法,虽然已经工作了五年,当看到每次代码提交后排名的提升,内心依然很有成就感。题目比较简单,求小于n的素数个数,素数也叫质数,具有以下特点:

  • 正整数
  • 只能被1和本身整除
  • 1既不是素数也不是合数,所以最小的素数是2

根据上面的特点,我们还可以推断出:

  • 除了2,其它的素数都是奇数

依据这一点,我们可以写出下面的实现:

class Solution {
    public int countPrimes(int n) {
        if (n < 3) {
            return 0;
        }
        int count = 1;// 2
        for (int i = 3; i < n; i += 2) {
            // 只判断奇数是不是素数
            boolean isPrime = true;
            for (int j = 3; j * j <= i; j += 2) {
                // 奇数不可能被偶数整除,所以只试除奇数
                if (i % j == 0) {
                    isPrime = false;
                    break;
                }
            }
            if (isPrime) {
                count++;
            }
        }
        return count;
    }
}

j * j <= i相当于j <= Math.sqrt(i),但速度会快一点,那为什么只需要判断到√i呢,因为对于一个非素数(合数),其最小约数(除1外)必小于等于其平方根。

设k为最小约数
这个实现被Accept了,但时间复杂度较高,排名也很靠后。这个算法中,判断一个奇数i是不是素数,是通过试除小于等于√i的奇数来实现,这会有重复计算的场景,比如3和9,5和15,根据素数和合数的特点,可以推断出任意一个合数都可以分解成几个素数的乘机,所以我们可以通过试除小于等于√i的素数来判断i是不是素数,素数相对于奇数,无疑减少了很多判断次数。

class Solution {
    public int countPrimes(int n) {
        if (n < 3) {
            return 0;
        }
        int count = 0;
        int[] primes = new int[n / 2];
        for (int i = 3; i < n; i += 2) {
            // 只判断奇数是不是素数
            boolean isPrime = true;
            for (int j = 0; j < count && primes[j] * primes[j] <= i; j++) {
                // 只试除素数
                if (i % primes[j] == 0) {
                    isPrime = false;
                    break;
                }
            }
            if (isPrime) {
                primes[count++] = i;
            }
        }
        return count + 1;// 2
    }
}

效果好了一些,但这个实现时间复杂度依然很高,比试除法更高效的是筛选法,筛选法的策略是将素数的倍数全部筛掉,剩下的就是素数了,下图很生动的体现了筛选的过程:
埃拉托斯特尼筛法

筛选的过程是先筛掉非素数,针对本文的题目,每筛掉一个,素数数量-1即可,上面说过素数的一个特点,除了2,其它的素数都是奇数,所以我们只需在奇数范围内筛选就可以了。

class Solution {
    public int countPrimes(int n) {
        if (n < 3) {
            return 0;
        }
        int count = n / 2;// 筛掉一半偶数
        boolean[] notPrime = new boolean[n];
        for (int i = 3; i * i < n; i += 2) {// 只筛3≤i<√n奇数
            if (!notPrime[i]) {        
                // 筛掉素数的奇数倍数
                for (int j = i * i; j < n; j += 2 * i) {// 从i*i开始筛
                    if (!notPrime[j]) {
                        notPrime[j] = true;
                        count--;
                    }
                }
            }
        }
        return count;
    }
}
示例 3 5 7 9 11 13 15 17 19 21 23 25 27 29 备注
i=3 3 5 7 9 11 13 15 17 19 21 23 25 27 29 3->9,15,21,27
i=5 3 5 7 9 11 13 15 17 19 21 23 25 27 29 5->25

对于一个奇数i,会依次筛掉i*i,i(i+2),i(i+4),i(i+6)…i(i+2n),那么为什么不筛3i,5i,7i…(i-4)i,(i-2)i呢,因为他们已经被筛过了,当我们要筛掉奇数i的倍数时,那么i之前的奇数(i-2,i-4…7,5,3)的倍数((i-2)i,(i-4)i…7i,5i,3i)已经被筛掉了,这个算法的效果还不错。

版权声明
本博客所有的原创文章,作者皆保留版权。转载必须包含本声明,保持本文完整,并以超链接形式注明作者高爽和本文原始地址:http://www.jianshu.com/p/d6736b492720

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 背景 一年多以前我在知乎上答了有关LeetCode的问题, 分享了一些自己做题目的经验。 张土汪:刷leetcod...
    土汪阅读 12,776评论 0 33
  • 自然方程是揭示中医药学基础理论的数学结构框架 摘要:本人在素数问题的几十年研究中,找到了三种素数生成函数方法,展示...
    星辰阅读 1,246评论 1 5
  • 我希望自己的每个脚印都铿锵有力,收到的每一声问候都发自内心。 是的,我和每一个同龄人一样,渴望一个温暖的怀抱,一段...
    素色墨染阅读 219评论 0 3
  • (我用的是Xcode8.3.1)今天在用xib拖一个cell的时候突然给我报两个错误 可神奇的是可以运行,虽然不影...
    傅hc阅读 2,198评论 7 3
  • 任何东西都是脆弱的吧? 昨晚不知道吃东西的哪一环节出了差错,凌晨肚子疼的厉害。清晰记得那种感觉,冷汗一阵一阵,脸上...
    33bdc3c72501阅读 272评论 0 0