NoSQL的优势

在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写、海量数据高效存储、高可扩展性和高可用性这些难题。不过就是因为这些问题Nosql诞生了。

NOSQL有这些优势:

大数据量,可以通过廉价服务器存储大量的数据,轻松摆脱传统mysql单表存储量级限制。

高扩展性,NoSQL去掉了关系数据库的关系型特性,很容易横向扩展,摆脱了以往老是纵向扩展的诟病。

高性能,NoSQL通过简单的key-value方式获取数据,非常快速。还有NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多。[redis等]

灵活的数据模型,NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。

高可用,NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如mongodb通过mongos、mongo分片就可以快速配置出高可用配置。



NoSQL数据库的四大分类

键值(Key-Value)存储数据库

这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.

列存储数据库。

这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.

文档型数据库

文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。

图形(Graph)数据库

图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。如:Neo4J, InfoGrid, Infinite Graph.

因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容