Note 3: GPT

Improving Language Understanding by Generative Pre-Training

Radford et al., (2018)

  1. GPT (Generative Pre-Training) is semi-supervised approach for language understanding tasks using a combination of unsupervised pre-training and supervised fine-tuning.
    • Goal: It can learn a universal representation that transfers with little adaptation to a wide range of tasks.
    • Assumption: We have a large corpus of unlabeled text and several annotated training sets.

2. Two-stage training procedure

  • Unsupervised pre-training : Use a language modeling objective on the unlabeled data to learn the initial parameters of a neural network model (This paper selects the Transformer (Vaswani et al., 2017) as its model architecture).
  • supervised fine-tuning: Adapt these parameters to a target task using the corresponding supervised objective.

3. Unsupervised pre-training

Given an unsupervised corpus of tokens U=\{u_1, \ldots, u_n\}.

  • A multi-layer Transformer applies a multi-headed self-attention operation over the input context tokens followed by position-wise feedforward layers to produce an output distribution over target tokens:
    \begin{aligned} h_0 &= UW_e+W_p\\ h_l &={ transformer\_block(h_{l-1}) \forall{i}\in[1,n]}\\ P(u) &= softmax(h_nW_e^T) \end{aligned}
    where U=(u_{-k},\ldots,u_{-1}) is the context vector of tokens, n is the number of layerts, W_eis the token embedding matrix, and W_p is the position embedding matrix.
  • The objective is to maximize the following likelihood L_1:
    L_1(U)=\sum_{i}{\log{P(u_i|u_{i-k},\ldots,u_{i-1};\Theta)}}
    where k is the size of the context window and \Theta is the model's parameters.

4. Supervised fine-tuning

Given a labeled dataset C where each instance is a sequence of input tokens [x^1, \ldots, x^m] along with a label y.

  • Pass the inputs through the pre-trained model to get the h_l^m and then fed h_l^m into an added linear output layer with parameters W_y to predict y:
    P(p|x^1,\ldots, x^m)=softmax(h_l^m W_y)
  • The objective is to maximize the following likelihood L_3:
    \begin{aligned} L_3(C) &= L_2(C)+\lambda*L_1(C)\\ L_2(C) &= \sum_{(x,y)}{\log{P(y|x^1,\ldots,x^m)}} \end{aligned}
    • Including the language modeling L_1 as auxiliary objective to the fine-tuning can not only improve the generalization of the supervised model, but also accelerate convergence during training.

5. Task-specific input transformations

All following transformations include adding randomly initialized start and end tokens (\langle s \rangle, \langle e \rangle).

Radford et al., (2018)


Reference

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容