年终干货礼包!轻松入门“用户画像”

懒癌严重发作,两个月木有写文章,灵感枯竭的我决定写一篇很干的干货(压箱底的工作日常),就谈谈大家经常听到却又一肚子懵逼的“用户画像”

随便配个图

What 基础概念扫盲

用户画像(User Profile):也称人物角色,是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”。

标签(tag):也称数据点,对用户信息高度精炼的特征标识,一般标签越精准,对应覆盖的人数则越少。所谓千人千面,不同人群有不同的特征和标签,就像指纹。

用户画像多采取层级概念,条理分明地呈现了人群数据的特征分布。用户画像层级自顶向下包含画像体系(User Profile)、维度(Dimension)、数据点(Tag)。画像体系这一层可理解为标记画像类别的文件夹,常见的有基础信息,地理位置,兴趣爱好,设备信息,消费信息等。

画像层级

当当当当,笔者的画像强势入镜,嗯纯粹为了加强大家的理解。看图说话,以下包含画像体系有:基本信息,地理位置,兴趣爱好,设备信息等,而基本信息下的维度包括性别,年龄,学历,职业等,地理位置下的维度包括当前位置、原籍等,设备信息下的维度包括手机品牌、机型、系统等····而每个维度下的取值即可称作标签(数据点),如职业下的标签可以有医生、老师、产品经理、作家等。这里注意的是,有些地方的标签定义有所不同,包含多个维度的取值,如:喜欢购买护肤品的一线城市的白领。

用户画像举例

Why 为什么要使用用户画像

用户画像是当下很多企业都会提及的概念,多数情况下会和大数据以及营销挂钩。

1,从公司战略层面来说,好的用户画像可以帮助企业进行市场洞察、预估市场规模,从而辅助制定阶段性目标,指导重大决策,提升ROI;更有助于避免同质化,进行个性化营销。,

2,从产品本身角度来说,用户画像可以围绕产品进行人群细分,确定产品的核心人群,从而有助于确定产品定位,优化产品的功能点。例如美妆类app,则前期可大致锁定画像一二线城市,喜欢时尚,年龄段在18至35之间的女性;

3,从数据管理角度来说,用户画像有助于建立数据资产,挖掘数据的价值,使数据分析更为精确,甚至可以进行数据交易,促进数据流通。互联网营销行业中常用的DMP(Data Management Platform)就是用户画像使用的一个好例子。

How 构建方法详解

构建用户画像的步骤如下图所示,短腿的狗不打猎,以下6个步骤缺一不可。

画像构建步骤

采集数据:数据的来源有多种,很多公司有自己的CRM系统,或者有智能采集系统日志的工具,常用的采集方式包括API、SDK和传感器采集等,可以通过想要挖掘什么标签来反推需要的数据源。

数据清洗:原始数据源存在“脏数据”,包括数据空缺和噪声、不一致、重复、错误等问题,为了保证后期挖掘的准确性,避免对决策造成影响,须对原始数据进行预处理。

数据标准化:用户画像的建立需要有整合多源数据(跨屏跨媒体)的能力,例如一个实体可能使用多个设备,拥有网络世界的多个账号,则须把多个身份ID组合,建立统一的标准,才能完整标识实体的用户画像。

用户建模:通过算法模型来定义人群的用户画像,常见为分类模型和聚类模型,例如SVM,神经网络,k-means。

标签挖掘:通过平台来进行标签的加工和计算,通常需要部署环境,如通过Hadoop平台进行训练和学习,大规模的并行计算。

标签验证:须通过真实case验证标签挖掘结果的正确性,保证标签对应的处理结果跟预期大体相符。此步骤有时可以跟上个步骤(标签挖掘)对调,即可以先用小样本数据验证模型的可靠性,再依照结果进行调整,再进行挖掘。

数据可视化:即视觉呈现群体或个人的用户画像,包括柱状图/饼状图/表格等,市面上也有一些数据可视化工具,此步骤可忽略。

 Case 案例探究

举个栗子,假如我们现在要举办一场金融活动,须挖掘用户画像为“深圳金融从业人群”,由于此类人群在办公点活动时间较长,我们可以通过移动设备的LBS信息筛选出深圳的金融办公地点,由此简单筛选出经常在此区域活动的人群;另外,结合app使用的兴趣行为信息,如时常浏览使用金融理财类应用的人群筛选出目标人群。当然,还需通过消费水平、年龄等信息排除掉无关人群。数据源和算法模型的准确性都会影响到最终加工出来的画像结果。

Attention 注意事项 

1,用户画像的制定须与具体业务场景或所属行业相结合,避免太过抽象,不同场景下同个标签名称可能表示不同意思,例如性别分为真实生理性别以及网络虚拟性别,须区别对待;

2,画像的粒度不是越细越好,划分的标签越多,对应覆盖人群会急速减少,表征能力弱,且可能是伪特征;

3,不能盲目使用用户画像,画像多为静态特征,用户特征随时间动态变化,也可能随场景空间而不同。当然也有动态的用户画像数据,如用户的访问路径、访问时长等信息。


呐!2016的最后一篇文章,后续还会继续更新这方面的文章,非常俗气的说一句: 2017请对我好一点。路过的盆友也对我好一点,点个喜欢呗(*˘︶˘*)*如需转载,请私信沟通~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容