31、聚合分析的平均值、最大值、数量、求和、histogram以及date histogram实战

主要内容:聚合分析的平均值、最大值、数量、求和、histogram以及date histogram实战

1、_bucket嵌套实现多层下钻分析

1.1、avg求平均值

比如说:

红色电视中的3台长虹的平均价格是多少?
红色电视中的1台小米的平均价格是多少?

下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分组执行聚合分析操作,这就叫做下钻分析

es,下钻分析,就要对bucket进行多层嵌套,多次分组

bucket,分组操作,histogram,按照某个值指定的interval,划分一个一个的bucket

按照多个维度(颜色+品牌)多层下钻分析,而且学会了每个下钻维度(颜色,颜色+品牌),都可以对每个维度分别执行一次metric聚合操作

GET /tvs/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "color_avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}
1.2、max,min,count,sum

count:bucket,terms,自动就会有一个doc_count,就相当于是count
max:求一个bucket内,指定field值最大的那个数据
min:求一个bucket内,指定field值最小的那个数据
sum:求一个bucket内,指定field值的总和
求总和,就可以拿到一个颜色下的所有电视的销售总额

GET /tvs/_search
{
  "size": 0,
  "aggs": {
    "colors": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "min_price": {
          "min": {
            "field": "price"
          }
        },
        "max_price": {
          "max": {
            "field": "price"
          }
        },
        "sum_price": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
  }
}
1.3、histogram分组操作

histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作

"histogram":{ 
  "field": "price",
  "interval": 2000
},

interval:2000,划分范围,02000,20004000,40006000,60008000,8000~10000,buckets

去根据price的值,比如2500,看落在哪个区间内,比如20004000,此时就会将这条数据放入20004000对应的那个bucket中

bucket有了之后,一样的,去对每个bucket执行avg,count,sum,max,min,等各种metric操作,聚合分析

GET /tvs/_search
{
  "size": 0,
  "aggs": {
    "price": {
      "histogram": {
        "field": "price",
        "interval": 2000
      },
      "aggs": {
        "revenue": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
  }
}
1.4、date histogram

date histogram:按照我们指定的某个date类型的日期field,以及日期interval,按照一定的日期间隔,去划分bucket

date interval = 1m,

2017-01-01~2017-01-31,就是一个bucket
2017-02-01~2017-02-28,就是一个bucket

然后会去扫描每个数据的date field,判断date落在哪个bucket中,就将其放入那个bucket

2017-01-05,就将其放入2017-01-01~2017-01-31,就是一个bucket

min_doc_count:即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的
extended_bounds,min,max:划分bucket的时候,会限定在这个起始日期,和截止日期内

[fixed_interval] or [calendar_interval]

GET /tvs/_search
{
   "size" : 0,
   "aggs": {
      "sales": {
         "date_histogram": {
            "field": "sold_date",
            "calendar_interval": "month",
            "format": "yyyy-MM-dd",
            "min_doc_count" : 0, 
            "extended_bounds" : { 
                "min" : "2016-01-01",
                "max" : "2017-12-31"
            }
         }
      }
   }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,226评论 6 524
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,509评论 3 405
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,523评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,181评论 1 302
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,189评论 6 401
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,642评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,993评论 3 431
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,977评论 0 280
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,527评论 1 326
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,547评论 3 347
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,661评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,250评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,991评论 3 340
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,422评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,571评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,241评论 3 382
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,737评论 2 366

推荐阅读更多精彩内容