原文 http://www.codeceo.com/article/learn-java-lambda.html
Lambda简介
Lambda作为函数式编程中的基础部分,在其他编程语言(例如:Scala)中早就广为使用,但在Java领域中发展较慢,直到java8,才开始支持Lambda。
抛开数学定义不看,直接来认识Lambda。Lambda表达式本质上是匿名方法,其底层还是通过invokedynamic指令来生成匿名类来实现。它提供了更为简单的语法和写作方式,允许你通过表达式来代替函数式接口。在一些人看来,Lambda就是可以让你的代码变得更简洁,完全可以不使用——这种看法当然没问题,但重要的是lambda为Java带来了闭包。得益于Lamdba对集合的支持,通过Lambda在多核处理器条件下对集合遍历时的性能提高极大,另外我们可以以数据流的方式处理集合——这是非常有吸引力的。
Lambda的语法极为简单,类似如下结构:
(parameters) -> expression
或者
(parameters) -> { statements; }
Lambda表达式由三部分组成:
paramaters:类似方法中的形参列表,这里的参数是函数式接口里的参数。这里的参数类型可以明确的声明也可不声明而由JVM隐含的推断。另外当只有一个推断类型时可以省略掉圆括号。
->:可理解为“被用于”的意思
方法体:可以是表达式也可以代码块,是函数式接口里方法的实现。代码块可返回一个值或者什么都不反回,这里的代码块块等同于方法的方法体。如果是表达式,也可以返回一个值或者什么都不反回。
我们通过以下几个示例来做说明:
//示例1:不需要接受参数,直接返回10()->10//示例2:接受两个int类型的参数,并返回这两个参数相加的和(intx,inty)->x+y;//示例2:接受x,y两个参数,该参数的类型由JVM根据上下文推断出来,并返回两个参数的和(x,y)->x+y;//示例3:接受一个字符串,并将该字符串打印到控制到,不反回结果(String name)->System.out.println(name);//示例4:接受一个推断类型的参数name,并将该字符串打印到控制台name->System.out.println(name);//示例5:接受两个String类型参数,并分别输出,不反回(String name,String sex)->{System.out.println(name);System.out.println(sex)}//示例6:接受一个参数x,并返回该该参数的两倍x->2*x
Lambda用在哪里
在[函数式接口][1]中我们知道Lambda表达式的目标类型是函数性接口——每一个Lambda都能通过一个特定的函数式接口与一个给定的类型进行匹配。因此一个Lambda表达式能被应用在与其目标类型匹配的任何地方,lambda表达式必须和函数式接口的抽象函数描述一样的参数类型,它的返回类型也必须和抽象函数的返回类型兼容,并且他能抛出的异常也仅限于在函数的描述范围中。
接下来,我们看一个自定义的函数式接口示例:
@FunctionalInterfaceinterfaceConverter{Tconvert(F from);}
首先用传统的方式来使用该接口:
Converter converter=newConverter() { @Override public Integer convert(Stringfrom) {returnInteger.valueOf(from); } }; Integer result = converter.convert("200"); System.out.println(result);
很显然这没任何问题,那么接下里就是Lambda上场的时刻,用Lambda实现Converter接口:
Converter converter=(param)->Integer.valueOf(param); Integer result = converter.convert("101"); System.out.println(result);
通过上例,我想你已经对Lambda的使用有了个简单的认识,下面,我们在用一个常用的Runnable做演示:
在以前我们可能会写下这种代码:
newThread(newRunnable() {@Overridepublicvoidrun(){ System.out.println("hello lambda"); } }).start();
在某些情况下,大量的匿名类会让代码显得杂乱无章。现在可以用Lambda来使它变得简洁:
newThread(()->System.out.println("hello lambda")).start();
方法引用
方法引用是Lambda表达式的一个简化写法。所引用的方法其实是Lambda表达式的方法体的实现,其语法结构为:
ObjectRef::methodName
左边可以是类名或者实例名,中间是方法引用符号”::”,右边是相应的方法名。方法引用被分为三类:
在某些情况下,我们可能写出这样的代码:
publicclassReferenceTest{publicstaticvoidmain(String[] args){ Converter converter=newConverter() {@OverridepublicIntegerconvert(String from){returnReferenceTest.String2Int(from); } }; converter.convert("120"); }@FunctionalInterfaceinterfaceConverter{Tconvert(F from); }staticintString2Int(String from){returnInteger.valueOf(from); }}
这时候如果用静态引用会使的代码更加简洁:
Converter converter = ReferenceTest::String2Int; converter.convert("120");
2. 实例方法引用
我们也可能会写下这样的代码:
publicclassReferenceTest{publicstaticvoidmain(String[] args){ Converter converter =newConverter() {@OverridepublicIntegerconvert(String from){returnnewHelper().String2Int(from); } }; converter.convert("120"); }@FunctionalInterfaceinterfaceConverter{Tconvert(F from); }staticclassHelper{publicintString2Int(String from){returnInteger.valueOf(from); } }}
同样用实例方法引用会显得更加简洁:
Helper helper =newHelper(); Converter converter = helper::String2Int; converter.convert("120");
3. 构造方法引用
现在我们来演示构造方法的引用。首先我们定义一个父类Animal:
classAnimal{privateString name;privateintage;publicAnimal(String name,intage){this.name = name;this.age = age; }publicvoidbehavior(){ } }
接下来,我们在定义两个Animal的子类:Dog、Bird
publicclassBirdextendsAnimal{publicBird(String name,intage){super(name, age); }@Overridepublicvoidbehavior(){ System.out.println("fly"); }}classDogextendsAnimal{publicDog(String name,intage){super(name, age); }@Overridepublicvoidbehavior(){ System.out.println("run"); }}
随后我们定义工厂接口:
interfaceFactory{Tcreate(String name,intage); }
接下来我们还是用传统的方法来创建Dog类和Bird类的对象:
Factory factory=newFactory() {@OverridepublicAnimalcreate(String name,intage){returnnewDog(name,age); } }; factory.create("alias",3); factory=newFactory() {@OverridepublicAnimalcreate(String name,intage){returnnewBird(name,age); } }; factory.create("smook",2);
仅仅为了创建两个对象就写了十多号代码,现在我们用构造函数引用试试:
Factory dogFactory =Dog::new; Animal dog = dogFactory.create("alias",4); Factory birdFactory = Bird::new; Bird bird = birdFactory.create("smook",3);
这样代码就显得干净利落了。通过Dog::new这种方式来穿件对象时,Factory.create函数的签名选择相应的造函数。
域即作用域,Lambda表达式中的参数列表中的参数在该Lambda表达式范围内(域)有效。在作用Lambda表达式内,可以访问外部的变量:局部变量、类变量和静态变量,但操作受限程度不一。
在Lambda表达式外部的局部变量会被JVM隐式的编译成final类型,因此只能访问外而不能修改。
publicclassReferenceTest{publicstaticvoidmain(String[] args){intn =3; Calculate calculate = param -> {//n=10; 编译错误returnn + param; }; calculate.calculate(10); }@FunctionalInterfaceinterfaceCalculate{intcalculate(intvalue); }}
访问静态变量和成员变量
在Lambda表达式内部,对静态变量和成员变量可读可写。
publicclassReferenceTest{publicintcount =1;publicstaticintnum =2;publicvoidtest(){ Calculate calculate = param -> { num =10;//修改静态变量count =3;//修改成员变量returnn + param; }; calculate.calculate(10); }publicstaticvoidmain(String[] args){ }@FunctionalInterfaceinterfaceCalculate{intcalculate(intvalue); }}
Lambda不能访问函数接口的默认方法
java8增强了接口,其中包括接口可添加default关键词定义的默认方法,这里我们需要注意,Lambda表达式内部不支持访问默认方法。
在[函数式接口][2]一节中,我们提到java.util.function包中内置许多函数式接口,现在将对常用的函数式接口做说明。
输入一个参数,并返回一个Boolean值,其中内置许多用于逻辑判断的默认方法:
@Test public voidpredicateTest() { Predicate predicate = (s) -> s.length() > 0; booleantest= predicate.test("test"); System.out.println("字符串长度大于0:"+test);test= predicate.test(""); System.out.println("字符串长度大于0:"+test);test= predicate.negate().test(""); System.out.println("字符串长度小于0:"+test); Predicate pre = Objects::nonNull; Object ob = null;test= pre.test(ob); System.out.println("对象不为空:"+test); ob = new Object();test= pre.test(ob); System.out.println("对象不为空:"+test); }
Function接口
接收一个参数,返回单一的结果,默认的方法(andThen)可将多个函数串在一起,形成复合Funtion(有输入,有输出)结果,
@Testpublicvoid functionTest() {FunctiontoInteger=Integer::valueOf;//toInteger的执行结果作为第二个backToString的输入FunctionbackToString=toInteger.andThen(String::valueOf); String result = backToString.apply("1234"); System.out.println(result);Functionadd=(i)->{ System.out.println("frist input:"+ i);returni *2; };Functionzero=add.andThen((i)-> { System.out.println("second input:"+ i); return i *0; }); Integer res = zero.apply(8); System.out.println(res); }
Supplier接口
返回一个给定类型的结果,与Function不同的是,Supplier不需要接受参数(供应者,有输出无输入)
@TestpublicvoidsupplierTest(){ Supplier supplier = () ->"special type value"; String s = supplier.get(); System.out.println(s); }
Consumer接口
代表了在单一的输入参数上需要进行的操作。和Function不同的是,Consumer没有返回值(消费者,有输入,无输出)
@TestpublicvoidconsumerTest(){ Consumer add5 = (p) -> { System.out.println("old value:"+ p); p = p +5; System.out.println("new value:"+ p); }; add5.accept(10); }
以上四个接口的用法代表了java.util.function包中四种类型,理解这四个函数式接口之后,其他的接口也就容易理解了,现在我们来做一下简单的总结:
Predicate用来逻辑判断,Function用在有输入有输出的地方,Supplier用在无输入,有输出的地方,而Consumer用在有输入,无输出的地方。你大可通过其名称的含义来获知其使用场景。
Lambda为java8带了闭包,这一特性在集合操作中尤为重要:java8中支持对集合对象的stream进行函数式操作,此外,stream api也被集成进了collection api,允许对集合对象进行批量操作。
下面我们来认识Stream。
Stream表示数据流,它没有数据结构,本身也不存储元素,其操作也不会改变源Stream,而是生成新Stream.作为一种操作数据的接口,它提供了过滤、排序、映射、规约等多种操作方法,这些方法按照返回类型被分为两类:凡是返回Stream类型的方法,称之为中间方法(中间操作),其余的都是完结方法(完结操作)。完结方法返回一个某种类型的值,而中间方法则返回新的Stream。中间方法的调用通常是链式的,该过程会形成一个管道,当完结方法被调用时会导致立即从管道中消费值,这里我们要记住:Stream的操作尽可能以“延迟”的方式运行,也就是我们常说的“懒操作”,这样有助于减少资源占用,提高性能。对于所有的中间操作(除sorted外)都是运行在延迟模式下。
Stream不但提供了强大的数据操作能力,更重要的是Stream既支持串行也支持并行,并行使得Stream在多核处理器上有着更好的性能。
Stream的使用过程有着固定的模式:
创建Stream
通过中间操作,对原始Stream进行“变化”并生成新的Stream
使用完结操作,生成最终结果
也就是
创建——>变化——>完结
对于集合来说,可以通过调用集合的stream()或者parallelStream()来创建,另外这两个方法也在Collection接口中实现了。对于数组来说,可以通过Stream的静态方法of(T … values)来创建,另外,Arrays也提供了有关stream的支持。
除了以上基于集合或者数组来创建Stream,也可以通过Steam.empty()创建空的Stream,或者利用Stream的generate()来创建无穷的Stream。
下面我们以串行Stream为例,分别说明Stream几种常用的中间方法和完结方法。首先创建一个List集合:
List lists=newArrayList(); lists.add("a1"); lists.add("a2"); lists.add("b1"); lists.add("b2"); lists.add("b3"); lists.add("o1");
中间方法
结合Predicate接口,Filter对流对象中的所有元素进行过滤,该操作是一个中间操作,这意味着你可以在操作返回结果的基础上进行其他操作。
publicstaticvoid streamFilterTest() { lists.stream().filter((s -> s.startsWith("a"))).forEach(System.out::println);//等价于以上操作Predicate predicate = (s) -> s.startsWith("a"); lists.stream().filter(predicate).forEach(System.out::println);//连续过滤Predicate predicate1 = (s -> s.endsWith("1")); lists.stream().filter(predicate).filter(predicate1).forEach(System.out::println); }
排序(Sorted)
结合Comparator接口,该操作返回一个排序过后的流的视图,原始流的顺序不会改变。通过Comparator来指定排序规则,默认是按照自然顺序排序。
publicstaticvoid streamSortedTest() {System.out.println("默认Comparator"); lists.stream().sorted().filter((s -> s.startsWith("a"))).forEach(System.out::println);System.out.println("自定义Comparator"); lists.stream().sorted((p1, p2) -> p2.compareTo(p1)).filter((s -> s.startsWith("a"))).forEach(System.out::println); }
映射(Map)
结合Function接口,该操作能将流对象中的每个元素映射为另一种元素,实现元素类型的转换。
publicstaticvoid streamMapTest() { lists.stream().map(String::toUpperCase).sorted((a, b) -> b.compareTo(a)).forEach(System.out::println); System.out.println("自定义映射规则");Functionfunction=(p)->{returnp +".txt"; }; lists.stream().map(String::toUpperCase).map(function).sorted((a, b)-> b.compareTo(a)).forEach(System.out::println); }
在上面简单介绍了三种常用的操作,这三种操作极大简化了集合的处理。接下来,介绍几种完结方法:
“变换”过程之后,需要获取结果,即完成操作。下面我们来看相关的操作:
用来判断某个predicate是否和流对象相匹配,最终返回Boolean类型结果,例如:
publicstaticvoid streamMatchTest() {//流对象中只要有一个元素匹配就返回trueboolean anyStartWithA = lists.stream().anyMatch((s -> s.startsWith("a")));System.out.println(anyStartWithA);//流对象中每个元素都匹配就返回trueboolean allStartWithA = lists.stream().allMatch((s -> s.startsWith("a")));System.out.println(allStartWithA); }
收集(Collect)
在对经过变换之后,我们将变换的Stream的元素收集,比如将这些元素存至集合中,此时便可以使用Stream提供的collect方法,例如:
publicstaticvoidstreamCollectTest(){ Listlist= lists.stream().filter((p) -> p.startsWith("a")).sorted().collect(Collectors.toList()); System.out.println(list); }
计数(Count)
类似sql的count,用来统计流中元素的总数,例如:
publicstaticvoid streamCountTest() { longcount= lists.stream().filter((s -> s.startsWith("a"))).count();System.out.println(count); }
规约(Reduce)
reduce方法允许我们用自己的方式去计算元素或者将一个Stream中的元素以某种规律关联,例如:
publicstaticvoid streamReduceTest() {Optionaloptional= lists.stream().sorted().reduce((s1, s2) -> {System.out.println(s1 +"|"+ s2);returns1 +"|"+ s2; }); }
执行结果如下:
a1|a2
a1|a2|b1
a1|a2|b1|b2a1|a2|b1|b2|b3a1|a2|b1|b2|b3|o1
并行Stream VS 串行Stream
到目前我们已经将常用的中间操作和完结操作介绍完了。当然所有的的示例都是基于串行Stream。接下来介绍重点戏——并行Stream(parallel Stream)。并行Stream基于Fork-join并行分解框架实现,将大数据集合切分为多个小数据结合交给不同的线程去处理,这样在多核处理情况下,性能会得到很大的提高。这和MapReduce的设计理念一致:大任务化小,小任务再分配到不同的机器执行。只不过这里的小任务是交给不同的处理器。
通过parallelStream()创建并行Stream。为了验证并行Stream是否真的能提高性能,我们执行以下测试代码:
首先创建一个较大的集合:
List bigLists =newArrayList<>();for(inti =0; i <10000000; i++) { UUID uuid = UUID.randomUUID(); bigLists.add(uuid.toString()); }
测试串行流下排序所用的时间:
privatestaticvoidnotParallelStreamSortedTest(List bigLists){longstartTime = System.nanoTime();longcount = bigLists.stream().sorted().count();longendTime = System.nanoTime();longmillis = TimeUnit.NANOSECONDS.toMillis(endTime - startTime); System.out.println(System.out.printf("串行排序: %d ms", millis)); }
测试并行流下排序所用的时间:
privatestaticvoidparallelStreamSortedTest(List bigLists){longstartTime = System.nanoTime();longcount = bigLists.parallelStream().sorted().count();longendTime = System.nanoTime();longmillis = TimeUnit.NANOSECONDS.toMillis(endTime - startTime); System.out.println(System.out.printf("并行排序: %d ms", millis)); }
结果如下:
串行排序: 13336 ms
并行排序: 6755 ms
看到这里,我们确实发现性能提高了约么50%,你也可能会想以后都用parallel Stream不久行了么?实则不然,如果你现在还是单核处理器,而数据量又不算很大的情况下,串行流仍然是这种不错的选择。你也会发现在某些情况,串行流的性能反而更好,至于具体的使用,需要你根据实际场景先测试后再决定。
上面我们谈到Stream尽可能以延迟的方式运行,这里通过创建一个无穷大的Stream来说明:
首先通过Stream的generate方法来一个自然数序列,然后通过map变换Stream:
//递增序列classNatureSeqimplementsSupplier{longvalue =0;@OverridepublicLongget(){ value++;returnvalue; } }publicvoidstreamCreateTest(){ Stream stream = Stream.generate(newNatureSeq()); System.out.println("元素个数:"+stream.map((param) -> {returnparam; }).limit(1000).count()); }
执行结果为:
元素个数:1000
我们发现开始时对这个无穷大的Stream做任何中间操作(如:filter,map等,但sorted不行)都是可以的,也就是对Stream进行中间操作并生存一个新的Stream的过程并非立刻生效的(不然此例中的map操作会永远的运行下去,被阻塞住),当遇到完结方法时stream才开始计算。通过limit()方法,把这个无穷的Stream转为有穷的Stream。