【转载】Faster RCNN 学习笔记

原文:https://www.cnblogs.com/wangyong/p/8513563.html


下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层、Pooling层及全连接的分类和目标定位基本相同.


一)、整体框架

我们先整体的介绍下上图中各层主要的功能

1)、Conv layers提取特征图:

作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取input image的feature maps,该feature maps会用于后续的RPN层和全连接层

2)、RPN(Region Proposal Networks):

    RPN网络主要用于生成region proposals,首先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正anchor box,形成较精确的proposal(注:这里的较精确是相对于后面全连接层的再一次box regression而言)

3)、Roi Pooling:

该层利用RPN生成的proposals和VGG16最后一层得到的feature map,得到固定大小的proposal feature map,进入到后面可利用全连接操作来进行目标识别和定位

4)、Classifier:

 会将Roi Pooling层形成固定大小的feature map进行全连接操作,利用Softmax进行具体类别的分类,同时,利用L1 Loss完成bounding box regression回归操作获得物体的精确位置.


)、网络结构

现在,通过上图开始逐层分析

1)Conv layers

Faster RCNN首先是支持输入任意大小的图片的,比如上图中输入的P*Q,进入网络之前对图片进行了规整化尺度的设定,如可设定图像短边不超过600,图像长边不超过1000,我们可以假定M*N=1000*600(如果图片少于该尺寸,可以边缘补0,即图像会有黑色边缘)

① 13个conv层:kernel_size=3,pad=1,stride=1;

卷积公式:

             所以,conv层不会改变图片大小(即:输入的图片大小=输出的图片大小)

② 13个relu层:激活函数,不改变图片大小

③ 4个pooling层:kernel_size=2,stride=2;pooling层会让输出图片是输入图片的1/2

       经过Conv layers,图片大小变成(M/16)*(N/16),即:60*40(1000/16≈60,600/16≈40);则,Feature Map就是60*40*512-d(注:VGG16是512-d,ZF是256-d),表示特征图的大小为60*40,数量为512


2)RPN(Region Proposal Networks):

Feature Map进入RPN后,先经过一次3*3的卷积,同样,特征图大小依然是60*40,数量512,这样做的目的应该是进一步集中特征信息,接着看到两个全卷积,即kernel_size=1*1,p=0,stride=1;

如上图中标识:

① rpn_cls:60*40*512-d ⊕  1*1*512*18 ==> 60*40*9*2 

         逐像素对其9个Anchor box进行二分类

② rpn_bbox:60*40*512-d ⊕ 1*1*512*36==>60*40*9*4

 逐像素得到其9个Anchor box四个坐标信息(其实是偏移量,后面介绍)

  如下图所示:

(2.1)、Anchors的生成规则

      前面提到经过Conv layers后,图片大小变成了原来的1/16,令feat_stride=16,在生成Anchors时,我们先定义一个base_anchor,大小为16*16的box(因为特征图(60*40)上的一个点,可以对应到原图(1000*600)上一个16*16大小的区域),源码中转化为[0,0,15,15]的数组,参数ratios=[0.5, 1, 2]scales=[8, 16, 32]

   先看[0,0,15,15],面积保持不变,长、宽比分别为[0.5, 1, 2]是产生的Anchors box

如果经过scales变化,即长、宽分别均为 (16*8=128)、(16*16=256)、(16*32=512),对应anchor box如图

综合以上两种变换,最后生成9个Anchor box

   所以,最终base_anchor=[0,0,15,15]生成的9个Anchor box坐标如下:

[[ -84. -40. 99. 55.]

[-176.  -88.  191.  103.] 

[-360. -184.  375.  199.] 

[ -56.  -56.  71.  71.] 

[-120. -120.  135.  135.] 

[-248. -248.  263.  263.] 

[ -36.  -80.  51.  95.] 

[ -80. -168.  95.  183.] 

[-168. -344.  183.  359.]]

特征图大小为60*40,所以会一共生成60*40*9=21600个Anchor box

  源码中,通过width:(0~60)*16,height(0~40)*16建立shift偏移量数组,再和base_ancho基准坐标数组累加,得到特征图上所有像素对应的Anchors的坐标值,是一个[216000,4]的数组


 (2.2)、RPN工作原理解析

为了进一步更清楚的看懂RPN的工作原理,将Caffe版本下的网络图贴出来,对照网络图进行讲解会更清楚

主要看上图中框住的‘RPN’部分的网络图,其中‘rpn_conv/3*3’是3*3的卷积,上面有提到过,接着是两个1*1的全卷积,分别是图中的‘rpn_cls_score’和‘rpn_bbox_pred’,在上面同样有提到过。接下来,分析网络图中其他各部分的含义

2.2.1)、rpn-data

1. layer {

2.      name: 'rpn-data' 

3.      type: 'Python' 

4.      bottom: 'rpn_cls_score'  #仅提供特征图的height和width的参数大小

5.      bottom: 'gt_boxes'        #ground truth box

6.      bottom: 'im_info'        #包含图片大小和缩放比例,可供过滤anchor box

7.      bottom: 'data' 

8.      top: 'rpn_labels' 

9.      top: 'rpn_bbox_targets' 

10.      top: 'rpn_bbox_inside_weights' 

11.      top: 'rpn_bbox_outside_weights' 

12.      python_param { 

13.        module: 'rpn.anchor_target_layer' 

14.        layer: 'AnchorTargetLayer' 

15.        param_str: "'feat_stride': 16 \n'scales': !!python/tuple [8, 16, 32]" 

16.      } 

17.    }


这一层主要是为特征图60*40上的每个像素生成9个Anchor box,并且对生成的Anchor box进行过滤和标记,参照源码,过滤和标记规则如下:

① 去除掉超过1000*600这原图的边界的anchor box

② 如果anchor box与ground truth的IoU值最大,标记为正样本,label=1

③ 如果anchor box与ground truth的IoU>0.7,标记为正样本,label=1

④ 如果anchor box与ground truth的IoU<0.3,标记为负样本,label=0

     剩下的既不是正样本也不是负样本,不用于最终训练,label=-1

     什么是IoU:


     除了对anchor box进行标记外,另一件事情就是计算anchor box与ground truth之间的偏移量

   令:ground truth:标定的框也对应一个中心点位置坐标x*,y*和宽高w*,h*

anchor box: 中心点位置坐标x_a,y_a和宽高w_a,h_a

 所以,偏移量:

 △x=(x*-x_a)/w_a △y=(y*-y_a)/h_a 

   △w=log(w*/w_a) △h=log(h*/h_a)

    通过ground truth box与预测的anchor box之间的差异来进行学习,从而是RPN网络中的权重能够学习到预测box的能力


2.2.2) 、rpn_loss_cls、rpn_loss_bbox、rpn_cls_prob

下面集体看下这三个,其中‘rpn_loss_cls’、‘rpn_loss_bbox’是分别对应softmax,smooth L1计算损失函数,‘rpn_cls_prob’计算概率值(可用于下一层的nms非最大值抑制操作)

补充:

① Softmax公式,

计算各分类的概率值

      ② Softmax Loss公式,

RPN进行分类时,即寻找最小Loss值

在’rpn-data’中已经为预测框anchor box进行了标记,并且计算出与gt_boxes之间的偏移量,利用RPN网络进行训练。

RPN训练设置:在训练RPN时,一个Mini-batch是由一幅图像中任意选取的256个proposal组成的,其中正负样本的比例为1:1。如果正样本不足128,则多用一些负样本以满足有256个Proposal可以用于训练,反之亦然


2.2.3)、proposal

1. layer {

2.      name: 'proposal' 

3.      type: 'Python' 

4.      bottom: 'rpn_cls_prob_reshape' #[1,18,40,60]==> [batch_size, channel,height,width]Caffe的数据格式,anchor box分类的概率

5.      bottom: 'rpn_bbox_pred'  # 记录训练好的四个回归值△x, △y, △w, △h

6.      bottom: 'im_info' 

7.      top: 'rpn_rois' 

8.      python_param { 

9.        module: 'rpn.proposal_layer' 

10.        layer: 'ProposalLayer' 

11.        param_str: "'feat_stride': 16 \n'scales': !!python/tuple [4, 8, 16, 32]"

12.      } 

13.    }


在输入中我们看到’rpn_bbox_pred’,记录着训练好的四个回归值△x, △y, △w, △h。

源码中,会重新生成60*40*9个anchor box,然后累加上训练好的△x, △y, △w, △h,从而得到了相较于之前更加准确的预测框region proposal,进一步对预测框进行越界剔除和使用nms非最大值抑制,剔除掉重叠的框;比如,设定IoU为0.7的阈值,即仅保留覆盖率不超过0.7的局部最大分数的box(粗筛)。最后留下大约2000个anchor,然后再取前N个box(比如300个);这样,进入到下一层ROI Pooling时region proposal大约只有300个

用下图一个案例来对NMS算法进行简单介绍

如上图所示,一共有6个识别为人的框,每一个框有一个置信率。现在需要消除多余的:

· 按置信率排序: 0.95, 0.9, 0.9, 0.8, 0.7, 0.7

· 取最大0.95的框为一个物体框

· 剩余5个框中,去掉与0.95框重叠率IoU大于0.6(可以另行设置),则保留0.9, 0.8, 0.7三个框

· 重复上面的步骤,直到没有框了,0.9为一个框

· 选出来的为: 0.95, 0.9

所以,整个过程,可以用下图形象的表示出来

其中,红色的A框是生成的anchor box,而蓝色的G’框就是经过RPN网络训练后得到的较精确的预测框,绿色的G是ground truth box


2.2.4)、roi_data

1. layer {

2.      name: 'roi-data' 

3.      type: 'Python' 

4.      bottom: 'rpn_rois' 

5.      bottom: 'gt_boxes' 

6.      top: 'rois' 

7.      top: 'labels' 

8.      top: 'bbox_targets' 

9.      top: 'bbox_inside_weights' 

10.      top: 'bbox_outside_weights' 

11.      python_param { 

12.        module: 'rpn.proposal_target_layer' 

13.        layer: 'ProposalTargetLayer' 

14.        param_str: "'num_classes': 81" 

15.      } 

16.    }

为了避免定义上的误解,我们将经过‘proposal’后的预测框称为region proposal(其实,RPN层的任务其实已经完成,roi_data属于为下一层准备数据)

主要作用:

① RPN层只是来确定region proposal是否是物体(是/否),这里根据region proposal和ground truth box的最大重叠指定具体的标签(就不再是二分类问题了,参数中指定的是81类)

② 计算region proposal与ground truth boxes的偏移量,计算方法和之前的偏移量计算公式相同

经过这一步后的数据输入到ROI Pooling层进行进一步的分类和定位.


3)ROI Pooling:

1. layer {

2.      name: "roi_pool5" 

3.      type: "ROIPooling" 

4.      bottom: "conv5_3"  #输入特征图大小

5.      bottom: "rois"      #输入region proposal

6.      top: "pool5"    #输出固定大小的feature map

7.      roi_pooling_param { 

8.        pooled_w: 7 

9.        pooled_h: 7 

10.        spatial_scale: 0.0625 # 1/16 

11.      } 

12.    }

从上述的Caffe代码中可以看到,输入的是RPN层产生的region proposal(假定有300个region proposal box)和VGG16最后一层产生的特征图(60*40 512-d),遍历每个region proposal,将其坐标值缩小16倍,这样就可以将在原图(1000*600)基础上产生的region proposal映射到60*40的特征图上,从而将在feature map上确定一个区域(定义为RB*)。

在feature map上确定的区域RB*,根据参数pooled_w:7,pooled_h:7,将这个RB*区域划分为7*7,即49个相同大小的小区域,对于每个小区域,使用max pooling方式从中选取最大的像素点作为输出,这样,就形成了一个7*7的feature map

       细节可查看:https://www.cnblogs.com/wangyong/p/8523814.html

以此,参照上述方法,300个region proposal遍历完后,会产生很多个7*7大小的feature map,故而输出的数组是:[300,512,7,7],作为下一层的全连接的输入


4)、全连接层:

经过roi pooling层之后,batch_size=300, proposal feature map的大小是7*7,512-d,对特征图进行全连接,参照下图,最后同样利用Softmax Loss和L1 Loss完成分类和定位


通过full connect层与softmax计算每个region proposal具体属于哪个类别(如人,马,车等),输出cls_prob概率向量;同时再次利用bounding box regression获得每个region proposal的位置偏移量bbox_pred,用于回归获得更加精确的目标检测框

即从PoI Pooling获取到7x7大小的proposal feature maps后,通过全连接主要做了:

4.1)通过全连接和softmax对region proposals进行具体类别的分类

4.2)再次对region proposals进行bounding box regression,获取更高精度的rectangle box


作为一枚技术小白,写这篇笔记的时候参考了很多博客论文,在这里表示感谢,同时,未经同意,请勿转载....

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容