二分法的左右边界

二分法的左右边界

二分法用起来还是挺好用的,就是每次我总是纠结边界条件到底如何确定,用小于号还是小于等于号,满足条件后left是mid还是mid+1,为此专门做了两道简单题,整理了下思路。

题目一

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法

var searchInsert = function(nums, target) {
  let left = 0
  let right = nums.length
  if(nums[0] > target) { return 0}
  while(left < right){
    let mid = Math.floor(left + (right - left)/2)
    if(nums[mid] < target){
      left = mid + 1
    }else if(nums[mid] > target){
      right = mid
    }else {
      return mid
    }
  }
  return left
};

题目二

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

var search = function(nums, target) {
  let left = 0
  let right = nums.length
  while(left < right){
    let mid = Math.floor(left + (right - left)/2)
    if(nums[mid] < target){
      left = mid + 1
    }else if(nums[mid] > target){
      right = mid
    }else{
      return mid
    }
  }
  return -1
};

我一般做二分法的题都是使用小于号来做判断

while(left<right)的这种写法实际上也确定了每次的判断范围是[left,right)

这也意味着当我拿到mid来判断是左边还是右边的边界的时候,如果mid在左边的话一定不能在这个区间内,所以要进行+1的操作,如果是当做右边界则没有任何问题,毕竟这个值实际上是不会取到的。

当满足条件需要返回结果的时候,我们需要结合题意来指定输出。

特别值得注意的是mid的取值用的是Math.floor()方法这同样是因为我们想要的值是一个比mid大的一个整数(所以先向下取整,后面left取mid+1),避免区间重叠陷入死循环。

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

友情链接更多精彩内容