2021-10-12-torch.nn.linear

参考:
https://zhuanlan.zhihu.com/p/152198144

import torch

x = torch.randn(128, 20)  # 输入的维度是(128,20)
m = torch.nn.Linear(20, 30)  # 20,30是指维度
output = m(x)
print('m.weight.shape:\n ', m.weight.shape)
print('m.bias.shape:\n', m.bias.shape)
print('output.shape:\n', output.shape)

# ans = torch.mm(input,torch.t(m.weight))+m.bias 等价于下面的
ans = torch.mm(x, m.weight.t()) + m.bias   
print('ans.shape:\n', ans.shape)

print(torch.equal(ans, output))


m.weight.shape:
  torch.Size([30, 20])
m.bias.shape:
 torch.Size([30])
output.shape:
 torch.Size([128, 30])
ans.shape:
 torch.Size([128, 30])
True

为什么 m.weight.shape = (30,20)?

答:因为线性变换的公式是:

image

先生成一个(30,20)的weight,实际运算中再转置,这样就能和x做矩阵乘法了

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。