09 使用python完成词频统计

1 系统、软件以及前提约束

  • CentOS-7 64
    为减少linux权限对初学者造成影响,所有命令均在linux的root权限下进行操作。
  • 已安装hadoop-2.5.2 https://www.jianshu.com/p/5707c5ccd85b
  • CentOS7当中已经默认安装python3.7.3

2 操作步骤

  • 创建mapper.py文件
#!/usr/bin/python

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        print ('%s\t%s' % (word, 1))

验证,执行以下语句:

echo aa bb cc dd aa cc|python mapper.py

得到以下结果:


查看统计结果
  • 创建reducer.py文件:
#!/usr/bin/python

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

# input comes from STDIN
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()

    # parse the input we got from mapper.py
    word, count = line.split('\t', 1)

    # convert count (currently a string) to int
    try:
        count = int(count)
    except ValueError:
        # count was not a number, so silently
        # ignore/discard this line
        continue

    # this IF-switch only works because Hadoop sorts map output
    # by key (here: word) before it is passed to the reducer
    if current_word == word:
        current_count += count
    else:
        if current_word:
            # write result to STDOUT
            print ('%s\t%s' % (current_word, current_count))
        current_count = count
        current_word = word

# do not forget to output the last word if needed!
if current_word == word:
    print ('%s\t%s' % (current_word, current_count))

验证,执行以下语句:

echo aa bb cc dd aa cc|python mapper.py|sort|python reducer.py

得到以下结果:


查看统计结果
  • 创建一个文件info.txt,内容如下:
aa bb cc dd aa cc
aa bb cc dd aa cc
aa bb cc dd aa cc
aa bb cc dd aa cc
aa bb cc dd aa cc cc dd
  • 上传该文件到HDFS的/data的info文件中
hdfs dfs -mkdir /data
hdfs dfs -put info.txt /data/info
  • 执行以下命令,确保hdfs下/out99不存在
 $HADOOP_HOME/bin/hadoop jar 
 $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.5.2.jar 
 -input "/data/*" 
 -output "/out99" 
 -mapper "python mapper.py" 
 -reducer "python reducer.py" 
 -file "/root/mapper.py" 
 -file "/root/reducer.py" 

注意:$HADOOP_HOME就是hadoop的家目录。
以上就是通过python完成词频统计的过程。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容