python调用Hanlp做命名实体识别以及词性标注

之前需要做一个中文命名实体识别的api,看完了一些相关论文以后觉得短时间内自己实现不大现实,于是找了一些开源工具,其中哈工大的LTP效果是很好的,但是免费使用限流量,需要给钱才行; NLPIR的pynlpir似乎还不能支持命名实体识别等复杂工作,只能做一些分词之类;最后还剩下Hanlp,感谢Hanlp的作者hancks无私的将代码开源,还提供了那么详细的文档。

pyhanlp只有少数功能,其他复杂一点的功能需要使用python调用java代码来实现。
以下是api的模型部分,大多是照着文档写成的。
python调用java需要jpype库,具体安装请参考之前的博客:jpype安装的简便方法

# -*- coding: utf-8 -*-

"""
Created on Thu May 10 09:19:55 2018

@author: wang小尧
"""

import jpype

#路径
jvmPath = jpype.getDefaultJVMPath() # 获得系统的jvm路径
ext_classpath = r"./ner/hanlp\hanlp-1.6.3.jar:./ner/hanlp"
jvmArg = '-Djava.class.path=' + ext_classpath
jpype.startJVM(jvmPath, jvmArg, "-Xms1g", "-Xmx1g")

#繁体转简体
def TraditionalChinese2SimplifiedChinese(sentence_str):
    HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
    return HanLP.convertToSimplifiedChinese(sentence_str)

#切词&命名实体识别与词性标注(可以粗略识别)
def NLP_tokenizer(sentence_str):
    NLPTokenizer = jpype.JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
    return NLPTokenizer.segment(sentence_str)

#地名识别,标注为ns
def Place_Recognize(sentence_str):
    HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
    segment = HanLP.newSegment().enablePlaceRecognize(True)
    return HanLP.segment(sentence_str)

#人名识别,标注为nr
def PersonName_Recognize(sentence_str):
    HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
    segment = HanLP.newSegment().enableNameRecognize(True)
    return HanLP.segment(sentence_str)

#机构名识别,标注为nt
def Organization_Recognize(sentence_str):
    HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
    segment = HanLP.newSegment().enableOrganizationRecognize(True)
    return HanLP.segment(sentence_str)

#标注结果转化成列表
def total_result(function_result_input):
    x = str(function_result_input)
    y = x[1:len(x)-1]
    y = y.split(',')
    return y

#时间实体
def time_result(total_result):
    z = []
    for i in range(len(total_result)):
        if total_result[i][-2:] == '/t':
            z.append(total_result[i])
    return z

#Type_Recognition 可以选 ‘place’,‘person’,‘organization’三种实体,
#返回单一实体类别的列表
def single_result(Type_Recognition,total_result):
    if Type_Recognition == 'place':
        Type = '/ns'
    elif Type_Recognition == 'person':
        Type = '/nr'
    elif Type_Recognition == 'organization':
        Type = '/nt'
    else:
        print ('请输入正确的参数:(place,person或organization)')
    z = []
    for i in range(len(total_result)):
        if total_result[i][-3:] == Type:
            z.append(total_result[i])
    return z

#把单一实体结果汇总成一个字典
def dict_result(sentence_str):
    sentence = TraditionalChinese2SimplifiedChinese(sentence_str)
    total_dict = {}
    a = total_result(Place_Recognize(sentence))
    b = single_result('place',a)
    c = total_result(PersonName_Recognize(sentence))
    d = single_result('person',c)
    e = total_result(Organization_Recognize(sentence))
    f = single_result('organization',e)
    g = total_result(NLP_tokenizer(sentence))
    h = time_result(g)
    total_list = [i for i in [b,d,f,h]]
    total_dict.update(place = total_list[0],person = total_list[1],organization = total_list[2],time = total_list[3])
    jpype.shutdownJVM()#关闭JVM虚拟机
    return total_dict

#测试
test_sentence="2018年武胜县新学乡政府大楼门前锣鼓喧天,6月份蓝翔给宁夏固原市彭阳县红河镇捐赠了挖掘机,中国科学院计算技术研究所的宗成庆教授负责教授自然语言处理课程,而他的学生现在正在香港看肉蒲团"
print (dict_result(test_sentence))


识别结果:



{'place': [' 武胜县/ns', ' 宁夏/ns', ' 固原市/ns', ' 彭阳县/ns', ' 红河镇/ns', ' 香港/ns'], 'person': [' 宗成庆/nr'], 'organization': [' 蓝翔/nt', ' 中国科学院计算技术研究所/nt'], 'time': ['2018年/t', ' 6月份/t', ' 现在/t']}

遇到的问题:

在弄这个api时遇到了一些问题,就是当我打开java虚拟机JVM,功能正常使用完关闭了JVM,但是再打开的时候就会报错,所以得一直保持一个JVM一直打开的状态,或者重启kernel才行。网上找了找也没能找到靠谱的解决方案,这个问题只有以后慢慢解决了。如果有人知道如何处理,可以给我发私信。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容