RocketMQ最佳实践

最近在业务中开始大量使用RocketMQ,记录一下心得。

Producer最佳实践

一、发送消息注意事项

  1. 一个应用尽可能用一个Topic,消息子类型用tags来标识,tags可以由应用自由设置。只有发送消息设置了tags,消费方在订阅消息时,才可以利用tags在broker做消息过滤。
message.setTags("TagA");
  1. 每个消息在业务层面的唯一标识码,要设置到keys字段,方便将来定位消息丢失问题。服务器会为每个消息创建索引(哈希索引),应用可以通过topic,key来查询这条消息内容,以及消息被谁消费。由于是哈希索引,请务必保证key尽可能唯一,这样可以避免潜在的哈希冲突。
// 订单Id
String orderId = "20034568923546";
message.setKeys(orderId);
  1. 消息发送成功或者失败,要打印消息日志,务必要打印sendresult和key字段。
  2. send消息方法,只要不抛异常,就代表发送成功。但是发送成功会有多个状态,在sendResult里定义。
  • SEND_OK
    消息发送成功
  • FLUSH_DISK_TIMEOUT
    消息发送成功,但是服务器刷盘超时,消息已经进入服务器队列,只有此时服务器宕机,消息才会丢失
  • FLUSH_SLAVE_TIMEOUT
    消息发送成功,但是服务器同步到Slave时超时,消息已经进入服务器队列,只有此时服务器宕机,消息才会丢失
  • SLAVE_NOT_AVAILABLE
    消息发送成功,但是此时slave不可用,消息已经进入服务器队列,只有此时服务器宕机,消息才会丢失
  1. 对于消息不可丢失应用,务必要有消息重发机制
    例如如果消息发送失败,存储到数据库,能有定时程序尝试重发,或者人工触发重发。

二、消息发送失败如何处理

Producer的send方法本身支持内部重试,重试逻辑如下:

  1. 至多重试3次。
  2. 如果发送失败,则轮转到下一个Broker。
  3. 这个方法的总耗时时间不超过sendMsgTimeout设置的值,默认10s。
    所以,如果本身向broker发送消息产生超时异常,就不会再做重试。

以上策略仍然不能保证消息一定发送成功,为保证消息一定成功,建议应用这样做
如果调用send同步方法发送失败,则尝试将消息存储到db,由后台线程定时重试,保证消息一定到达Broker。

Consumer最佳实践

如下:

  • 消费过程要做到幂等(即消费端去重);
  • 尽量使用批量方式消费方式,可以很大程度上提高消费吞吐量;
  • 优化每条消息消费过程。

RocketMQ消费端去重方法

RocketMQ无法避免消息重复,所以如果业务对消费重复非常敏感,务必要在业务层面去重,有以下几种去重方式:

  1. 将消息的唯一键,可以是msgId,也可以是消息内容中的唯一标识字段,例如订单Id等,消费之前判断是否在Db或Tair(全局KV存储)中存在,如果不存在则插入,并消费,否则跳过。(实际过程要考虑原子性问题,判断是否存在可以尝试插入,如果报主键冲突,则插入失败,直接跳过);
  2. 使用业务层面的状态机去重

三、其他配置

1、线上应该关闭autoCreateTopicEnable,即在配置文件中将其设置为false。

RocketMQ在发送消息时,会首先获取路由信息。如果是新的消息,由于MQServer上面还没有创建对应的Topic,这个时候,如果上面的配置打开的话,会返回默认Topic的(RocketMQ会在每台broker上面创建名为TBW102的Topic)路由信息,然后Producer会选择一台Broker发送消息,选中的broker在存储消息时,发现消息的Topic还没有创建,就会自动创建Topic。后果就是:以后所有该Topic的消息,都将发送到这台broker上,达不到负载均衡的目的。

所以基于目前RocketMQ的设计,建议关闭自动创建Topic的功能,然后根据消息量的大小,手动创建Topic。

2、关于RocketMQ 版本

官方推荐使用RocketMQ 3.4.6及以后版本。

参考资料

RocketMQ 最佳实践:https://github.com/vintagewang/document/blob/master/rocketmq/RocketMQ%20%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.docx

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容

  • 分布式开放消息系统(RocketMQ)的原理与实践 来源:http://www.jianshu.com/p/453...
    meng_philip123阅读 12,906评论 6 104
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,633评论 18 139
  • 根据上面的模型,我们可以深入研究一些关于消息系统设计的主题: 消费者并发性 消费者热点问题 消费者负载均衡 消息路...
    Kohler阅读 2,293评论 1 4
  • kafka的定义:是一个分布式消息系统,由LinkedIn使用Scala编写,用作LinkedIn的活动流(Act...
    时待吾阅读 5,311评论 1 15
  • 握紧手中系着粉红色蝴蝶结的礼盒,地隐独自坐在公园的长椅上,低着头看不出表情。一对卿卿我我的小情侣路过,感受到了一...
    天阆阅读 474评论 0 0