node进程间通信

作为一名合格的程序猿/媛,对于进程、线程还是有必要了解一点的,本文将从下面几个方向进行梳理,尽量做到知其然并知其所以然:

  • 进程和线程的概念和关系
  • 进程演进
  • 进程间通信
  • 理解底层基础,助力上层应用
  • 进程保护

进程和线程的概念和关系

用户下达运行程序的命令后,就会产生进程。同一程序可产生多个进程(一对多关系),以允许同时有多位用户运行同一程序,却不会相冲突。

进程需要一些资源才能完成工作,如CPU使用时间、存储器、文件以及I/O设备,且为依序逐一进行,也就是每个CPU核心任何时间内仅能运行一项进程。

进程与线程的区别:进程是计算机管理运行程序的一种方式,一个进程下可包含一个或者多个线程。线程可以理解为子进程。

摘自wiki百科

也就是说,进程是我们运行的程序代码和占用的资源总和,线程是进程的最小执行单位,当然也支持并发。可以说是把问题细化,分成一个个更小的问题,进而得以解决。

并且进程内的线程是共享进程资源的,处于同一地址空间,所以切换和通信相对成本小,而进程可以理解为没有公共的包裹容器

但是如果进程间需要通信的话,也需要一个公共环境或者一个媒介,这个就是操作系统。

进程演进

我们的计算机有单核的、多核的,也有多种的组合方式:

  1. 单进程

因为是一个进程,所以某一时刻只能处理一个事务,后续需要等待,体验不好

  1. 多进程

为了解决上面的问题,但是如果有很多请求的话,会产生很多进程,开销本身就是一个不小的问题,而进程占据独立的内存,这么多响应是的进程难免会有重复的状态和数据,会造成资源浪费。

  1. 多进程多线程

由之前的进程处理事务,改成使用线程处理事务,解决了开销大,资源浪费的问题,还可以使用线程池,预先创建就绪线程,减少创建和销毁线程的开销。

但是一个cpu某一时刻只能处理一个事务。像时间分片来调度线程的话,会导致线程切换频繁,是非常耗时的。

  1. 单进程单线程

类似也就是v8,基于事件驱动,有效的避免了内存开销和上下文切换,只需要线程间通信,即可在适当的时刻进行事务结果等的反馈。

但是遇到计算量很大的事务,会阻塞后续任务的执行。像这样:

image
  1. 单进程单线程(多进程架构)

node提供了clusterchild_process两个模块进行进程的创建,也就是我们常说的主(Master)从(Worker)模式。Master负责任务调度和管理Worker进程,Worker进行事务处理。

image

进程间通信

node本身提供了cluster和child_process模块创建子进程,本质上cluster.fork()是child_process.fork()的上层实现,cluster带来的好处是可以监听共享端口,否则建议使用child_process。

child_process

child_process提供了异步和同步的操作方法,具体可查看文档

常见的异步方法有:

  1. .exec
  2. .execFile
  3. .fork
  4. .spawn

除了fork出来的进程会长期驻存外,其他方式会在子进程任务完成后以流的方式返回并销毁进程。

异步方法会返回ChildProcess的实例,ChildProcess不能直接创建,只能返回。

来看几张图吧:

image
image
image

举个例子

有一个很长很长的循环,如果不开启子进程,会等循环之后才能执行之后的逻辑。

我们可以将耗时的循环放到子进程中,主进程会接受子进程的返回,不影响后续事物的处理。

// 主进程
const execFile = require('child_process').execFile;

execFile('./child.js', [], (err, stdout, stderr) => {
    if (err) {
        console.log(err);
        return;
    }
    console.log(`stdout: ${stdout}`);
});
console.log('用户事务处理');

// 子进程
#!/usr/bin/env node

for (let i = 0; i < 10000; i++) {
    process.stdout.write(`${i}`);
}

而对于fork,它是专门用来生产子进程的,也可以说是主进程的拷贝,返回的ChildProcess中会内置额外的通信通道,也就是IPC通道,允许消息在父子进程间传递,例如通过文件描述符,不过由于创建的是匿名通道,所以只有主进程可以与之通信,其他进程无法进行通信。但相对的还有命名通道,详见下一节。

看一个简单的例子:

//parent.js
const cp = require('child_process');
const n = cp.fork(`${__dirname}/sub.js`);
n.on('message', (m) => {
    console.log('PARENT got message:', m);
});
n.send({ hello: 'world' });

//sub.js
process.on('message', (m) => {
    console.log('CHILD got message:', m);
});
process.send({ foo: 'bar' });

父进程通过fork返回的ChildProcess进行通信的监听和发送,子进程通过全局变量process进行监听和发送。

cluster

cluster本质上也是通过child_process.fork创建子进程,他还能帮我们合理的管理进程。

const cluster = require('cluster');
// 判断是否为主进程
if (cluster.isMaster) {
    const cpuNum = require('os').cpus().length;
    for (let i = 0; i < cpuNum; ++i) {
        cluster.fork();
    }

    cluster.on('online', (worker) => {
        console.log('Create worker-' + worker.process.pid);
    });

    cluster.on('exit', (worker, code, signal) => {
        console.log(
            '[Master] worker ' +
                worker.process.pid +
                ' died with code:' +
                code +
                ', and' +
                signal
        );
        cluster.fork(); // 重启子进程
    });
} else {
    const net = require('net');
    net.createServer()
        .on('connection', (socket) => {
            setTimeout(() => {
                socket.end('Request handled by worker-' + process.pid);
            }, 10);
        })
        .listen(8989);
}

细心地你可能发现多个子进程监听了同一个端口,这样不会EADDRIUNS吗?

其实不然,真正监听端口的是主进程,当前端请求到达时,会将句柄发送给某个子进程。

理解底层基础,助力上层应用

进程间通信(IPC)大概有这几种:

  • 匿名管道
  • 命名管道
  • 信号量
  • 消息队列
  • 信号
  • 共享内存
  • 套接字

从技术上划分又可以划分成以下四种:

  1. 消息传递(管道,FIFO,消息队列)
  2. 同步(互斥量,条件变量,读写锁等)
  3. 共享内存(匿名的,命名的)
  4. 远程过程调用

文件描述符是什么?

在linux中一切皆文件,linux会给每个文件分配一个id,这个id就是文件描述符,指针也是文件描述符的一种。这个很好理解,不过我们可以再往深了说,一个进程启动后,会在内核空间(虚拟空间的一部分)创建一个PCB控制块,PCB内部有一个文件描述符表,记录着当前进程所有可用的文件描述符(即当前进程所有打开的文件)。系统出了维护文件描述符表外,还需要维护打开文件表(Open file table)和i-node表(i-node table)。

文件打开表(Open file table)包含文件偏移量,状态标志,i-node表指针等信息

i-node表(i-node table)包括文件类型,文件大小,时间戳,文件锁等信息

文件描述符不是一对一的,它可以:

  1. 同一进程的不同文件描述符指向同一文件
  2. 不同进程可以拥有相同的文件描述符(比如fork出的子进程拥有和父进程一样的文件描述符,或者不同进程打开同一文件)
  3. 不同进程的同一文件描述符也可以指向不同的文件
  4. 不同进程的不同文件描述符也可以指向同一个文件

上面提及了很多可以实现进程间通信的方式,那node进程间通信是以什么为基础的呢?

nodeIPC通过管道技术 加 事件循环方式进行通信,管道技术在windows下由命名管道实现,在*nix系统则由Unix Domain socket实现,提供给我们的是简单的message事件和send方法。

那管道是什么呢?

管道实际上是在内核中开辟一块缓冲区,它有一个读端一个写端,并传给用户程序两个文件描述符,一个指向读端,一个指向写端口,然后该缓存区存储不同进程间写入的内容,并供不同进程读取内容,进而达到通信的目的。

管道又分为匿名管道和命名管道,匿名管道常见于一个进程fork出子进程,只能亲缘进程通信,而命名管道可以让非亲缘进程进行通信。

image

其实本质上来说进程间通信是利用内核管理一块内存,不同进程可以读写这块内容,进而可以互相通信,当然,说起来简单,做起来难。有兴趣的朋友可以自行研究。

进程保护

可以用cluster建立主从进程架构,主进程调度管理和分发任务给子进程,并在子进程挂掉或断开连接后重启。

pm2是对cluster的一种封装,提供了:

  • 内奸负载均衡
  • 后台运行
  • 停机重载
  • 具有Ubuntu、CentOS的启动脚本
  • 停止不稳定的进程
  • 控制台检测
  • 有好的可视化界面

具体原理和细节以后有空再做分析。

文中若有错误的地方,欢迎指出,我会及时更新。希望读者借鉴的阅读。

部分图片来源网络,侵权立删

参考链接

进程、线程、协程

文件描述符

IPC

IPC2

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352