For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
一刷
思路是,用一个list记录所有的node, list[i]为一个set,装有所有与i相邻点的编号。如果set的size为1,表示为叶子节点,移去。即每次移去最外层(相同深度)的叶子。最终剩下来的为满足条件的root
public class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if(n == 1) return Collections.singletonList(0);
List<Set<Integer>> adj = new ArrayList<>(n);
for(int i=0; i<n; i++) adj.add(new HashSet<Integer>());
for(int[] edge : edges){
adj.get(edge[0]).add(edge[1]);
adj.get(edge[1]).add(edge[0]);
}
List<Integer> leaves = new ArrayList<>();
for(int i=0; i<n; i++)
if(adj.get(i).size() == 1) leaves.add(i);
while(n>2){
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<>();
for(int i:leaves){
int j = adj.get(i).iterator().next();
adj.get(j).remove(i);
if(adj.get(j).size() == 1) newLeaves.add(j);
}
leaves = newLeaves;
}
return leaves;
}
}
二刷
同上
class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
if(n == 1) return Collections.singletonList(0);
List<Set<Integer>> adj = new ArrayList<>();
for(int i=0; i<n; i++) adj.add(new HashSet<Integer>());
for(int[] edge : edges){
adj.get(edge[0]).add(edge[1]);
adj.get(edge[1]).add(edge[0]);
}
List<Integer> leaves = new ArrayList<>();
for(int i=0; i<n; i++){
if(adj.get(i).size() == 1) leaves.add(i);
}
while(n>2){
n -= leaves.size();
List<Integer> newLeaves = new ArrayList<>();
for(int i:leaves){
int j = adj.get(i).iterator().next();
adj.get(j).remove(i);
if(adj.get(j).size() == 1) newLeaves.add(j);
}
leaves = newLeaves;
}
return leaves;
}
}