使用深度学习来读唇语,压缩JPEG,保护住宅等

Transmission I

This week’s newsletter includes: a neural network for lip reading, a drone to defend your home, record breaking deep learning-powered JPEG compression, a style transfer implementation in TensorFlow, a self-driving car simulator in GTA V and more!
神经网络阅读唇语,保卫你住宅的无人机,使用深度学习压缩JPEG图片,一种基于TensorFlow的图片风格变换算法,在GTA V里的自动驾驶汽车。

Using Deep Learning to Read Lips 使用深度学习读唇语

LipNet is a ridiculously impressive LSTM recurrent network that attempts to read lips (imagine the possibilities!), achieving 93.4% accuracy on the GRID corpus, outperforming experienced human lipreaders and the previous 79.6% state-of-the-art accuracy. Read more…
LipNet是一个不可思议的LSTM recurrent network可以读唇语。达到了93.4%的正确率,远远超过了之前的唇语阅读软件79.6%的正确率。

Lossy Image Compression with Deep Learning 深度学习压缩JPEG

The gold standard of compression for JPEGs (JPEG 2000) has been beaten for the first time by an approach using deep learning, built by a team at Twitter. Prepare to see many more iterations on this idea! Read the paper…
JPEG图片的黄金压缩标准 (JPEG 2000) 这么多年来第一次被打败。

Fast Style Transfer in TensorFlow 基于TensorFlow快速的图片风格转换

Style transfer is a technique (popularized by Prisma) that utilizes deep learning to attempt to replicate an input photo using the style specified during training. Fast Style Transfer is an implementation using TensorFlow that can process an image in 100ms on a NVIDIA Titan X GPU. It even works on videos! Read more…

通过深度学习来实现特定风格的图片转换。

Improvements to Neural Enhance

Deep learning-powered image upscaler Neural Enhance (built by must-follow Tweeter @alexjc) continues to improve! New models are demonstrating better performance when handling blur and noise. See examples here and here. Read more…

深度学习来提高图像的清晰度,可以处理模糊和图像噪音。

Why Ford, Lincoln, and Lexus Testers Rule the Self-Driving Roost

Why are just two car models used extensively in autonomous vehicle development? The Lexus RX450 and the Ford Fusion, with its sibling, the Lincoln MKZ (the car we work on at Udacity) appear to dominate the landscape. Read more about why…

Blackberry Becomes an Automotive Brand 黑莓成为自动驾驶品牌

My colleague David shared the news that Blackberry is partnering with Ford, and how transformational it could be for Blackberry. Could Blackberry turn their company around by building software for self-driving cars? Read more…

黑莓正在和福特合作研发自动驾驶软件。

Machine Learning for Software Engineers

Reader @zuzoovn shared his multi-month and comprehensive study plan to go from a mobile developer (self-taught with no CS degree) to a machine learning engineer. Very useful read if you find yourself in a similar spot! Read more…

This Drone Will Protect Your House 无人机保护住宅

Here’s how it works: The Sunflower Home Awareness System relies on the drone and a handful of in-ground smart lights to watch over your house. It detects motion, vibration and sound. Using machine learning, the system can distinguish between a human, a car and animals. Crazy! Read more…

通过一架无人机和一些智能照明灯来监测你的住宅。
基于机器学习,系统可以分辨出进入的是人,还是汽车或者是动物。

Run a Self-Driving Car Simulator in GTA 在GTA中自动驾驶汽车

Having followed the work of @crizcraig on DeepDrive for quite a while, I was super excited to hear he has released instructions for anyone to get up and running with his self-driving car simulator in GTA V. It’s not a simple installation, and certainly not for the faint-hearted, but will be a ton of fun once running, promise! Read how to get up and running…

DeepDrive发布了一个任何人都能够在GTA V中模拟自动驾驶汽车的教程。

That’s it for this week, thanks for reading! If you have any thoughts or questions, I’d love to hear from you in Tweet-form. You can follow and message me at @olivercameron.

欢迎关注公众号「星流全栈」!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容