Task03笔记

1.过拟合、欠拟合及其解决方案

训练误差(training error):训练集上的误差 

泛化误差(generalization error):用测试集上的误差代替 

数据集划分:训练集(train set)/验证集(validate set)/测试集(test set)

其中训练集用来调整模型参数,验证集用来调整超参数 

k折交叉验证(k-folder cross-validation):将数据集分成k等份,每次取一份作为验证集,其余作为训练集,得到k组训练结果,最后对着k组训练结果取平均(k-folder可以降低数据集划分对结果的影响) 

过拟合(overfiting): 训练误差很低但是验证误差很高(数据不够或者参数太多) 

欠拟合(underfiting):训练集误差和验证集误差都很高(参数太少,拟合能力不够) 

解决过拟合的方法:

- 权重衰减(L2范数正则化) 

loss = loss + λ/2n|w|^2 

同时需要修改优化器中权重迭代方式

- DropOut 

当对该隐藏层使用丢弃法时,该层的隐藏单元将有一定概率被丢弃掉。设丢弃概率为 p ,那么有 p 的概率 hi 会被清零,有 1−p 的概率 hi 会除以 1−p 做拉伸。Dropout不改变输入的期望值。

使用MLP对两种方法进行验证

- 模型:MLP

- 优化器:sgd

- 损失函数:交叉熵

2.为什么优化器中只对权重参数设置衰减,而不对偏置参数设置衰减呢?

对偏置增加正则也是可以的,但是对偏置增加正则不会明显的产生很好的效果。而且偏置并不会像权重一样对数据非常敏感,所以不用担心偏置会学习到数据中的噪声。而且大的偏置也会使得我们的网络更加灵活,所以一般不对偏置做正则化。

3.丢弃法

丢弃法就是丢弃一些不好的特征。根正则原理其实是一样的,都是减少特征数量。不过丢弃法是随机丢弃。正则是人为抑制和丢弃

4.权重衰减和L2正则化是一个意思吗

L2正则化是在目标函数中直接加上一个正则项,直接修改了我们的优化目标。权值衰减是在训练的每一步结束的时候,对网络中的参数值直接裁剪一定的比例,优化目标的式子是不变的。在使用朴素的梯度下降法时二者是同一个东西,因为此时L2正则化的正则项对梯度的影响就是每次使得权值衰减一定的比例。但是在使用一些其他优化方法的时候,就不一样了。比如说使用Adam方法时,每个参数的学习率会随着时间变化。这时如果使用L2正则化,正则项的效果也会随之变化;而如果使用权值衰减,那就与当前的学习率无关了,每次衰减的比例是固定的。

引入正则项实际上是学习器的一种归纳偏好,即:选用尽可能简单的模型,避免过拟合,因为这样能够有更好的泛化性能。 这是一个增强泛化性能的通用的处理方式,当然如果你的模型如果本身准确率就不高,不会产生过拟合,那这种做法当然效果不好

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,635评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,543评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,083评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,640评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,640评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,262评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,833评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,736评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,280评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,369评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,503评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,185评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,870评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,340评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,460评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,909评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,512评论 2 359

推荐阅读更多精彩内容