文本分类-训练集文本预处理

一、文本预处理阶段###

1.1 设定训练集和测试集

训练集每一类的数量为500个文档,测试集每一类的数量也为500个文档。

image.png

1.2 计算每个文本的DF

为每一个文本计算TF,return格式为:'word', 'file_name', term-frequency
先算出每个文档中的'word', term-frequency, 在结束改文本的循环后将该文本中出现的词以 'word', 'file_name', term-frequency的形式加入 word_docid_tf

def compute_tf_by_file(self):
    word_docid_tf = []
    for name in self.filenames:
        with open(join(name), 'r') as f:
            tf_dict = dict()
            for line in f:
                line = self.process_line(line)
                words = jieba.cut(line.strip(), cut_all=False)
                for word in words:
                    tf_dict[word] = tf_dict.get(word, 0) + 1
        tf_list = tf_dict.items()
        word_docid_tf += [[item[0], name, item[1]] for item in tf_list]
    return word_docid_tf  

1.3 计算每个词项的TF、DF
为每一个词项计算TF,return的term_freq格式为:'word', dict ( 'file_name ', tf )
为每一个词项计算DF,return的doc_freq格式为:'word', df

def compute_tfidf(self):
    word_docid_tf = self.compute_tf_by_file()
    word_docid_tf.sort()
    doc_freq = dict()
    term_freq = dict()
    for current_word, group in groupby(word_docid_tf, itemgetter(0)):
        doclist = []
        df = 0
        for current_word, file_name, tf in group:
            doclist.append((file_name, tf))
            df += 1
        term_freq[current_word] = dict(doclist)
        doc_freq[current_word] = df
    return term_freq, doc_freq

1.4 精简term_freq, doc_freq
除去只出现在一个或0个文档中的词项
除去数字词项

def reduce_tfidf(self, term_freq, doc_freq):
    remove_list = []        
    for key in term_freq.keys():
        if len(key) < 2:#该词只出现在一个或0个文档中
            remove_list.append(key)
        else:
            try:
                float(key)#该词是数字
                remove_list.append(key)
            except ValueError:
                continue
    for key in remove_list:
        term_freq.pop(key)
        doc_freq.pop(key)
    return term_freq, doc_freq

1.5 为每个文本构建特征向量train_feature, train_target
为term_freq, doc_freq中的key,也就是词项标明index
用jieba分词,将分好的词放入一个临时的数组中。
遍历数组,由doc_freq[word]取得DF并计算iDF,由term_freq[word][name]
取得该词项在该文档中的TF,并计算每个词项的tf-idf值,并作为向量中词项对应index那一维的值。
train_feature, train_target = train_tfidf.tfidf_feature(os.path.join(input_path, 'train'),train_tf, train_df, N)

def tfidf_feature(self, dir, term_freq, doc_freq, N):
    filenames = []
    for (dirname, dirs, files) in os.walk(dir):
        for file in files:
            filenames.append(os.path.join(dirname, file))
    word_list = dict()
    for idx, word in enumerate(doc_freq.keys()):
        word_list[word] = idx
    features = []    
    target = []
    for name in filenames:
        feature = np.zeros(len(doc_freq.keys()))
        words_in_this_file = set()
        tags = re.split('[/\\\\]', name)
        tag = tags[-2]            
        with open(name, 'rb') as f:
            for line in f:
                line = self.process_line(line)
                words = jieba.cut(line.strip(), cut_all=False)
                for word in words:
                    words_in_this_file.add(word)
        for word in words_in_this_file:       
            try:
                idf = np.log(float(N) / doc_freq[word])
                tf = term_freq[word][name]
                feature[word_list[word]] = tf*idf
            except KeyError:
                continue
        features.append(feature)
        target.append(tag)
    return sparse.csr_matrix(np.asarray(features)), np.asarray(target)

1.6 存储&加载
为了节约之后运行的时间,可以通过如下方式把测试集tf和df的值直接存储:

Pickle.dump(train_tf, open(os.path.join(input_path, 'train_tf.pkl'), 'wb'))
print "saved train_tf.pkl"
Pickle.dump(train_df, open(os.path.join(input_path, 'train_df.pkl'), 'wb'))
print "saved train_df.pkl"

之后运行时,可以通过如下方式把测试集tf和df的值直接加载到内存,省去了重新计算的时间:

train_tf = Pickle.load(open(os.path.join(input_path, 'train_tf.pkl'), 'rb'))
print "loaded train_tf.pkl"
train_df = Pickle.load(open(os.path.join(input_path, 'train_df.pkl'), 'rb'))
train_tfidf.doc_freq=train_df
print "loaded train_df.pkl"
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容