16 ML FP-growth

用于频繁项集查找

from numpy import *

class treeNode:
    def __init__(self, nameValue, numOccur, parentNode):
        self.name = nameValue
        self.count = numOccur
        self.nodeLink = None
        self.parent = parentNode      #needs to be updated
        self.children = {} 
    
    def inc(self, numOccur):
        self.count += numOccur
        
    def disp(self, ind=1):
        print '  '*ind, self.name, ' ', self.count
        for child in self.children.values():
            child.disp(ind+1)

def createTree(dataSet, minSup=1): #create FP-tree from dataset but don't mine
    headerTable = {}
    #go over dataSet twice
    for trans in dataSet:#first pass counts frequency of occurance
        for item in trans:
            headerTable[item] = headerTable.get(item, 0) + dataSet[trans]

    for k in headerTable.keys():  #remove items not meeting minSup
        if headerTable[k] < minSup: 
            del(headerTable[k])

    freqItemSet = set(headerTable.keys())
    #print 'freqItemSet: ',freqItemSet
    if len(freqItemSet) == 0: 
        return None, None  #if no items meet min support -->get out

    for k in headerTable:
        headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link 

    #print 'headerTable: ',headerTable
    retTree = treeNode('Null Set', 1, None) #create tree

    for tranSet, count in dataSet.items():  #go through dataset 2nd time
        localD = {}
        for item in tranSet:  #put transaction items in order
            if item in freqItemSet:
                localD[item] = headerTable[item][0]

        if len(localD) > 0:
            orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
            updateTree(orderedItems, retTree, headerTable, count)#populate tree with ordered freq itemset
    return retTree, headerTable #return tree and header table

def updateTree(items, inTree, headerTable, count):
    if items[0] in inTree.children:#check if orderedItems[0] in retTree.children
        inTree.children[items[0]].inc(count) #incrament count
    else:   #add items[0] to inTree.children
        inTree.children[items[0]] = treeNode(items[0], count, inTree)

        if headerTable[items[0]][1] == None: #update header table 
            headerTable[items[0]][1] = inTree.children[items[0]]
        else:
            updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
    if len(items) > 1:#call updateTree() with remaining ordered items
        updateTree(items[1::], inTree.children[items[0]], headerTable, count)
        
def updateHeader(nodeToTest, targetNode):   #this version does not use recursion
    while (nodeToTest.nodeLink != None):    #Do not use recursion to traverse a linked list!
        nodeToTest = nodeToTest.nodeLink
    nodeToTest.nodeLink = targetNode

def loadSimpDat():
    simpDat = [['r', 'z', 'h', 'j', 'p'],
               ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
               ['z'],
               ['r', 'x', 'n', 'o', 's'],
               ['y', 'r', 'x', 'z', 'q', 't', 'p'],
               ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
    return simpDat

def createInitSet(dataSet):
    retDict = {}
    for trans in dataSet:
        retDict[frozenset(trans)] = 1
    return retDict

simpDat = loadSimpDat()
initSet = createInitSet(simpDat)
myTree, myHead = createTree(initSet, 3)
print('disp tree', myTree.disp())
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 一、相关定义 查找——查找就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录)。所有这些...
    开心糖果的夏天阅读 4,913评论 0 8
  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 175,704评论 25 709
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 135,508评论 19 139
  • 前言 其实读完斯坦福的这本《互联网大规模数据挖掘》,让我感觉到,什么是人工智能?人工智能就是更高层次的数据挖掘。机...
    我偏笑_NSNirvana阅读 14,392评论 1 23
  • 1Logistic回归: 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 适用数据类型...
    Always_6778阅读 5,712评论 0 1