用R语言对vcf文件进行数据挖掘.6 vcf可视化2

目录

  1. 前言
  2. 方法简介
  3. 从vcf文件里提取有用信息
  4. tidy vcfR
  5. vcf可视化1
  6. vcf可视化2
  7. 测序深度覆盖度
  8. 窗口缩放
  9. 如何单独分离染色体
  10. 利用vcf信息判断物种染色体倍数
  11. CNV分析

在上一篇文章vcf可视化1里,主要介绍了针对数据全体summary的可视化方法。这篇文章里会介绍针对个别样本的可视化。

使用数据

和之前一样,我们使用自带数据包

library(vcfR)

vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz", package = "pinfsc50")
dna_file <- system.file("extdata", "pinf_sc50.fasta", package = "pinfsc50")
gff_file <- system.file("extdata", "pinf_sc50.gff", package = "pinfsc50")

vcf <- read.vcfR(vcf_file, verbose = FALSE)
dna <- ape::read.dna(dna_file, format = "fasta")
gff <- read.table(gff_file, sep="\t", quote="")

chrom <- create.chromR(name="Supercontig", vcf=vcf, seq=dna, ann=gff, verbose=FALSE)
chrom <- masker(chrom, min_DP = 300, max_DP = 700)
chrom <- proc.chromR(chrom, verbose = FALSE)

Genotype数据

同样在之前的文章里介绍了如何用extract.gt()提取Genotype数据。可以通过同样的方法提取genotype数据的深度(DP),然后对其进行可视化。

dp <- extract.gt(chrom, element="DP", as.numeric=TRUE)
rownames(dp) <- 1:nrow(dp)
head(dp)
##   BL2009P4_us23 DDR7602 IN2009T1_us22 LBUS5 NL07434 P10127 P10650 P11633
## 1             7       6             8     6      12      6      4      6
## 2            12      20            16    20      28      9      8     11
## 3            27      26            23    26      39     22      8     11
## 4            29      27            32    27      38     22      7     10
## 5            26      30            41    30      44     18     11     11
## 6            23      36            35    36      54     18     20     18
##   P12204 P13527 P1362 P13626 P17777us22 P6096 P7722 RS2009P1_us8 blue13
## 1      1      7    NA     13         14     6    NA            6     16
## 2      6     29     1     41         33    11    NA           21     31
## 3      6     47     3     58         58    11    NA           28     71
## 4      4     44     5     70         62    10    NA           35     63
## 5     NA     29     3     62         49    11    NA           38     60
## 6      1     37     4     48         52    18    NA           27     68
##   t30-4
## 1     2
## 2     3
## 3     2
## 4     2
## 5     4
## 6     7

我们可以清楚的看到每一个位点的测序深度,可以对这些数据进行可视化,看一下大概的深度变化。从而估计拷贝数的变化。
heatmap.bp()来上一个热图来可视化测序深度。

heatmap.bp(dp[1001:1500,])

棒状图分别代表行或者列的和。右边的渐变色图例里,黄色代表高数量的高质量碱基,蓝色代表低数量的高质量碱基。如果指定的碱基长度过长,就会覆盖和忽略掉很多细节,所以建议热图的碱基长度不要超过1000。
当然,虽然热图的显示有限制只能显示1000bp以内的部分区域,但是可以单独显示全局棒状图。

par(mar=c(8,4,4,2))
barplot(apply(dp, MARGIN=2, mean, na.rm=TRUE), las=3)

同理,是不是可以按照这个办法按照染色体来显示拷贝数(CNVs)变化呢,之后需要来尝试一下。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容