转录组差异分析流程三大R包比较

总目录:

  1. 数据预处理
  2. limma包进行差异分析
  3. edgeR包进行差异分析
  4. DESeq2包进行差异分析
  5. 三大R包比较

1.输入数据比较

edgeR: 原始的count矩阵,支持单个样品和重复样品
DESeq2: 原始的count矩阵(htseq-count),只支持重复样品
limma: 原始的count矩阵(需自己标准化,一定要log化)、经过标准化的矩阵或芯片数据,只支持重复样品
注: 无重复RNAseq样本推荐使用Gfold软件进行分析

2.性能比较

导入数据

load('edgeR_diff.Rdata')
edgeR<-diff_signif
load('limma_diff.Rdata')
limma<-diff_signif
oad('deseq2_diff.Rdata')
deseq2<-diff_signif

差异基因数目比较

dim(deseq2)
dim(limma)
dim(edgeR)

image.png

edgeR: 得到基因数目最多

DESeq2: 得到基因数目适中

limma: 得到基因数目最少

差异基因一致性比较

library('VennDiagram')
data=list(DEseq2=rownames(deseq2),edgeR=rownames(edgeR),limma=rownames(limma))
ve<-venn.diagram(data,filename = NULL,fill=c('red','yellow','blue'))
grid.draw(ve)

image.png

结论:

三个R包得到的差异基因数目差别不是很大
edgeR包和DEseq2包得到的差异基因更加相似
limma包得到的差异基因准确率最高(其他两个R包不能得到的差异基因数量最少,只占总数的2%),但假阴性高(实际差异结果不差异)
edgeR包能得到更多的差异基因,但假阳性高(实际不差异结果差异)
运行速度比较
计算从导入数据(16610基因,8样本)到差异分析结束所需要的时间
limma: 3.944069 secs
edgeR: 5.882637 secs
DEseq2: 10.55145 secs
由此可见limma分析速度最快,DEseq2分析速度最慢

最后明确一个问题,三大R包用的什么标准化值来做的差异分析?他们用的是自己的标准化值。 那我想要用RPKM FPKM怎么办?自己算!

————————————————

原文链接:https://blog.csdn.net/weixin_45161743/article/details/103536523

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容