LeetCode 力扣 69. x 的平方根

题目描述(简单难度)

求一个数的平方根,不要求近似解,只需要整数部分。

解法一 二分法

本科的时候上计算方法的时候,讲过这个题的几个解法,二分法, 牛顿法,牛顿下山法,不同之处是之前是求近似解,类似误差是 0.0001 这样的。而这道题,只要求整数部分,所以先忘掉之前的解法,重新考虑一下。

求 n 的平方根的整数部分,所以平方根一定是 1,2,3 ... n 中的一个数。从一个有序序列中找一个数,像极了二分查找。先取中点 mid,然后判断 mid * mid 是否等于 n,小于 n 的话取左半部分,大于 n 的话取右半部分,等于 n 的话 mid 就是我们要找的了。

public int mySqrt(int x) {
    int L = 1, R = x;
    while (L <= R) {
        int mid = (L + R) / 2;
        int square = mid * mid;
        if (square == x) {
            return mid;
        } else if (square < x) {
            L = mid + 1;
        } else {
            R = mid - 1;
        }
    }
    return ?;
}

正常的 2 分法,如果最后没有找到就返回 -1。但这里肯定是不行的,那应该返回什么呢?

对于平方数 4 9 16... 肯定会进入 square == x 然后结束掉。但是非平方数呢?例如 15。我们知道 15 的根,一定是 3 点几。因为 15 在 9 和 16 之间,9 的根是 3,16 的根是 4。所以对于 15,3 在这里就是我们要找的。 3 * 3 < 15,所以在上边算法中,最后的解是流向 square < x 的,所以我们用一个变量保存它,最后返回就可以了。

public int mySqrt(int x) {
    int L = 1, R = x;
    int ans = 0; //保存最后的解
    while (L <= R) {
        int mid = (L + R) / 2;
        int square = mid * mid;
        if (square == x) {
            return mid;
        } else if (square < x) {
            ans = mid; //存起来以便返回
            L = mid + 1;
        } else {
            R = mid - 1;
        }
    }
    return ans;
}

看起来很完美了,但如果 x = Integer.MAX_VALUE 的话,下边两句代码是会溢出的。

int mid = (L + R) / 2;
int square = mid * mid;

当然,我们把变量用 long 存就解决了,这里有一个更优雅的解法。利用数学的变形。

int mid = L + (R - L) / 2;
int div = x / mid;

当然相应的 if 语句也需要改变。

else if (square < x)
mid * mid < x
mid < x / mid
mid < div

全部加进去就可以了。

public int mySqrt(int x) {
    int L = 1, R = x;
    int ans = 0;
    while (L <= R) {
        int mid = L + (R - L) / 2;
        int div = x / mid;
        if (div == mid) {
            return mid;
        } else if (mid < div) {
            ans = mid;
            L = mid + 1;
        } else {
            R = mid - 1;
        }
    }
    return ans;
}

时间复杂度:O(log ( x))。

空间复杂度:O(1)。

解法二 二分法求精确解

把求根转换为求函数的零点,求 n 的平方根,也就是求函数 f ( x ) = x² - n 的零点。这是一个二次曲线,与 x 轴有两个交点,我们要找的是那个正值。

这里基于零点定理,去写算法。

如果函数 y = f ( x ) 在区间 [ a, b ] 上的图像是连续不断的一条曲线,并且有f ( a ) · f ( b ) < 0, 那么,函数y = f ( x ) 在区间 ( a , b ) 内有零点,即存在 c ∈ ( a , b ) , 使得 f ( c ) = 0 ,这个 c 也就是方程 f ( x ) = 0 的根。

简单的说,如果曲线上两点的值正负号相反,其间必定存在一个根。

这样我们就可以用二分法,找出中点,然后保留与中点的函数值符号相反的一段,丢弃另一段,然后继续找中点,直到符合我们的误差。

由于题目要求的是整数部分,所以我们需要想办法把我们的精确解转成整数。

四舍五入?由于我们求的是近似解,利用我们的算法我们求出的 8 的立方根会是 2.8125,直接四舍五入就是 3 了,很明显这里 8 的平方根应该是 2。

直接舍弃小数?由于我们是近似解,所有 9 的平方根可能会是 2.999, 舍弃小数变成 2 ,很明显也是不对的。

这里我想到一个解法。

我们先采取四舍五入变成 ans,然后判断 ans * ans 是否大于 n,如果大于 n 了,ans 减 1。如果小于等于,那么 ans 不变。这样的话,求 8 的平方根的例子就被我们解决了。

int ans = (int) Math.round(mid); //先采取四舍五入
if ((long) ans * ans > n) {
    ans--;
}
// 可以不用 long
if (ans > n / ans) {
    ans--;
}

合起来就可以了。

//计算 x² - n
public double fx(double x, double n) {
    return x * x - n;
}

public int mySqrt(int n) {
    double low = 0;
    double high = n;
    double mid = (low + high) / 2;
    //函数值小于 0.1 的时候结束
    while (Math.abs(fx(mid, n)) > 0.1) {
        //左端点的函数值
        double low_f = fx(low, n);
        //中间节点的函数值
        double low_mid = fx(mid, n);
        //判断哪一段的函数值是异号的
        if (low_f * low_mid < 0) {
            high = mid;
        } else {
            low = mid;
        }
        mid = (low + high) / 2;
    }
    //先进行四舍五入
    int ans = (int) Math.round(mid);
    if (ans != 0 && ans > n / ans) {
        ans--;
    }
    return ans;
}

时间复杂度:

空间复杂度:O(1)。

解法三 牛顿法

具体解释可以参考下这篇文章,或者搜一下, 有很多讲解的,代码的话根据下边的迭代式进行写。

x_{k+1}=x_k- f(x_k)/f^{'}(x_k)

这里的话,f(x_n) = x^2-n

x_{k+1}=x_k-(x_k^2-n)/2x_k=(x_k^2+n)/2x_k = (x_k + n /x_k)/2

public int mySqrt(int n) {
    double t = n; // 赋一个初值
    while (Math.abs(t * t - n) > 0.1) {
        t = (n / t + t) / 2.0;
    }
    //先进行四舍五入 
    int ans = (int) Math.round(t); 
    //判断是否超出
    if ((long) ans * ans > n) {
        ans--;
    }
    return ans;
}

时间复杂度:

空间复杂度:O(1)。

首先用了正常的二分法,求出整数解。然后用常规的二分法、牛顿法求近似根,然后利用一个技巧转换为整数解。

更多详细通俗题解详见 leetcode.wang

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容