2023-07-07

假设我的数据集是auto.dta

因变量为price

自变量为rep78

控制变量为headroom weight length

回归模型为OLS,即主回归代码为reg rep78 headroom weight length

下面是1000次placebo test的代码

forvalue i=1/1000{sysuse auto,clear//调入数据*-思路:打乱rep78,即将rep78的全部取值拿出暂存,然后随机赋给每一个样本*-打乱rep78,即将rep78的全部取值拿出暂存    g obs_id=_n//初始样本序号gen random_digit=runiform()//生成随机数sort random_digit//按新生成的随机数排序g random_id=_n//产生随机序号preserve        keep random_id rep78//保留虚拟的rep78rename rep78 random_rep78        rename random_id id//重命名为id,以备与其他变量合并(merge)label var id 原数据与虚拟处理变量的唯一匹配码        save random_rep78,replace    restore        drop random_digit random_id rep78//删除原来的rep78rename obs_id id//重命名为id,以备与random_rep78合并(merge)label var id 原数据与虚拟处理变量的唯一匹配码        save rawdata,replace*-合并,回归,提取系数userawdata,clear        merge1:1id using random_rep78,nogen        reg  price random_rep78 headroom weight length        g _b_random_rep78=_b[random_rep78]//提取x的回归系数g _se_random_rep78=_se[random_rep78]//提取x的标准误keep _b_random_rep78 _se_random_rep78        duplicates drop _b_random_rep78,force        save placebo`i',replace//把第i次placebo检验的系数和标准误存起来}*-纵向合并1000次的系数和标准误useplacebo1,clearforvalue i=2/1000{append using placebo`i'//纵向合并1000次回归的系数及标准误}gen tvalue=_b_random_rep78/_se_random_rep78kdensity tvalue,xtitle("t值")ytitle("分布")saving(placebo_test)*-删除临时文件forvalue i=1/1000{erase  placebo`i'.dta}*-mark:后续有时间再将它封装成程序【完】

文献范例

周茂、陆 毅、杜 艳、 姚 星,2018:《开发区设立于地区制造业升级》,《中国工业经济》第3期。

作者:虚童

链接:https://www.jianshu.com/p/bad7471ab73b

来源:简书

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354

推荐阅读更多精彩内容