机器学习之决策树

原文地址

决策树是一种机器学习的方法。决策树的生成算法有ID3, C4.5和C5.0等。决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。

决策树是一种十分常用的分类方法,需要监管学习(有教师的Supervised Learning),监管学习就是给出一堆样本,每个样本都有一组属性和一个分类结果,也就是分类结果已知,那么通过学习这些样本得到一个决策树,这个决策树能够对新的数据给出正确的分类。这里通过一个简单的例子来说明决策树的构成思路:

给出如下的一组数据,一共有十个样本(学生数量),每个样本有分数,出勤率,回答问题次数,作业提交率四个属性,最后判断这些学生是否是好学生。最后一列给出了人工分类结果。

然后用这一组附带分类结果的样本可以训练出多种多样的决策树,这里为了简化过程,我们假设决策树为二叉树,且类似于下图:

通过学习上表的数据,可以设置A,B,C,D,E的具体值,而A,B,C,D,E则称为阈值。当然也可以有和上图完全不同的树形,比如下图这种的:

所以决策树的生成主要分以下两步,这两步通常通过学习已经知道分类结果的样本来实现。

1. 节点的分裂:一般当一个节点所代表的属性无法给出判断时,则选择将这一节点分成2个

子节点(如不是二叉树的情况会分成n个子节点)

2. 阈值的确定:选择适当的阈值使得分类错误率最小 (Training Error)。

比较常用的决策树有ID3,C4.5和CART(Classification And Regression Tree),CART的分类效果一般优于其他决策树。下面介绍具体步骤。

ID3: 由增熵(Entropy)原理来决定那个做父节点,那个节点需要分裂。对于一组数据,熵越小说明分类结果越好。熵定义如下:

Entropy=- sum [p(x_i) * log2(P(x_i) ]

其中p(x_i) 为x_i出现的概率。假如是2分类问题,当A类和B类各占50%的时候,

Entropy = - (0.5*log_2( 0.5)+0.5*log_2( 0.5))= 1

当只有A类,或只有B类的时候,

Entropy= - (1*log_2( 1)+0)=0

所以当Entropy最大为1的时候,是分类效果最差的状态,当它最小为0的时候,是完全分类的状态。因为熵等于零是理想状态,一般实际情况下,熵介于0和1之间。

熵的不断最小化,实际上就是提高分类正确率的过程。

比如上表中的4个属性:单一地通过以下语句分类:

1. 分数小于70为【不是好学生】:分错1个

2. 出勤率大于70为【好学生】:分错3个

3. 问题回答次数大于9为【好学生】:分错2个

4. 作业提交率大于80%为【好学生】:分错2个

最后发现 分数小于70为【不是好学生】这条分错最少,也就是熵最小,所以应该选择这条为父节点进行树的生成,当然分数也可以选择大于71,大于72等等,出勤率也可以选择小于60,65等等,总之会有很多类似上述1~4的条件,最后选择分类错最少即熵最小的那个条件。而当分裂父节点时道理也一样,分裂有很多选择,针对每一个选择,与分裂前的分类错误率比较,留下那个提高最大的选择,即熵减最大的选择。

C4.5:通过对ID3的学习,可以知道ID3存在一个问题,那就是越细小的分割分类错误率越小,所以ID3会越分越细,比如以第一个属性为例:设阈值小于70可将样本分为2组,但是分错了1个。如果设阈值小于70,再加上阈值等于95,那么分错率降到了0,但是这种分割显然只对训练数据有用,对于新的数据没有意义,这就是所说的过度学习(Overfitting)。

分割太细了,训练数据的分类可以达到0错误率,但是因为新的数据和训练数据不同,所以面对新的数据分错率反倒上升了。决策树是通过分析训练数据,得到数据的统计信息,而不是专为训练数据量身定做。

就比如给男人做衣服,叫来10个人做参考,做出一件10个人都能穿的衣服,然后叫来另外5个和前面10个人身高差不多的,这件衣服也能穿。但是当你为10个人每人做一件正好合身的衣服,那么这10件衣服除了那个量身定做的人,别人都穿不了。

所以为了避免分割太细,c4.5对ID3进行了改进,C4.5中,优化项要除以分割太细的代价,这个比值叫做信息增益率,显然分割太细分母增加,信息增益率会降低。除此之外,其他的原理和ID3相同。

CART:分类回归树

CART是一个二叉树,也是回归树,同时也是分类树,CART的构成简单明了。

CART只能将一个父节点分为2个子节点。CART用GINI指数来决定如何分裂:

GINI指数:总体内包含的类别越杂乱,GINI指数就越大(跟熵的概念很相似)。

a. 比如出勤率大于70%这个条件将训练数据分成两组:大于70%里面有两类:【好学生】和【不是好学生】,而小于等于70%里也有两类:【好学生】和【不是好学生】。

b. 如果用分数小于70分来分:则小于70分只有【不是好学生】一类,而大于等于70分有【好学生】和【不是好学生】两类。

比较a和b,发现b的凌乱程度比a要小,即GINI指数b比a小,所以选择b的方案。以此为例,将所有条件列出来,选择GINI指数最小的方案,这个和熵的概念很类似。

CART还是一个回归树,回归解析用来决定分布是否终止。理想地说每一个叶节点里都只有一个类别时分类应该停止,但是很多数据并不容易完全划分,或者完全划分需要很多次分裂,必然造成很长的运行时间,所以CART可以对每个叶节点里的数据分析其均值方差,当方差小于一定值可以终止分裂,以换取计算成本的降低。

CART和ID3一样,存在偏向细小分割,即过度学习(过度拟合的问题),为了解决这一问题,对特别长的树进行剪枝处理,直接剪掉。

以上的决策树训练的时候,一般会采取Cross-Validation法:比如一共有10组数据:

第一次. 1到9做训练数据, 10做测试数据

第二次. 2到10做训练数据,1做测试数据

第三次. 1,3到10做训练数据,2做测试数据,以此类推

做10次,然后大平均错误率。这样称为 10 folds Cross-Validation。

比如 3 folds Cross-Validation 指的是数据分3份,2份做训练,1份做测试。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容