三维曲面偏导数所在直线决定的平面是曲面切面的证明

设二元函数 z = f(x,y)(x_{0} ,y_{0})处可微的,f(x_{0} ,y_{0})处沿偏导数方向的切线决定一个平面S,证明Sf(x_{0} ,y_{0})处的切面。证明如下:

    f(x_{0} ,y_{0})处沿偏导数方向的切线方程分别为:\begin{cases}    L1: z-z_{0}=\frac{\partial f}{\partial x} (x-x_{0})  & , y = y_{0}\\    L2: z-z_{0}=\frac{\partial f}{\partial y} (y- y_{0})  & , x = x_{0}\end{cases},其中,L1f沿\frac{\partial f}{\partial x} 方向的切线,方向向量为\vec{v} _{1} = (x-x_{0},0,\frac{\partial f}{\partial x} (x - x_{0}))L2f沿\frac{\partial f}{\partial y} 方向上的切线,方向向量为\vec{v} _{2} = (0,y-y_{0},\frac{\partial f}{\partial y} (y - y_{0}))L1L2相交于(x_{0} ,y_{0}),故它们决定了平面S。平面S的法线\vec{n} = \vec{v}_{1}  \times \vec{v}_{2} = (-\frac{\partial f}{\partial x}(x-x_{0})(y-y_{0})),-\frac{\partial f}{\partial y}(x-x_{0})(y-y_{0}),(x-x_{0})(y-y_{0}))

    考虑函数z = f(x,y)实际上是三元函数w = g(x,y,z)= f(x,y) - z的等位面,故\nabla g = (\frac{\partial f}{\partial x} ,\frac{\partial f}{\partial y} ,-1)f正交,即\nabla g垂直于f(x_{0} ,y_{0})处的切平面。由于\vec{n} \times \nabla g = \vec{0} ,即S(x_{0} ,y_{0})S的法线与切平面的法线方向相同,故S就是f(x_{0} ,y_{0})处的切平面。

    命题证毕。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容