R包clusterProfiler比较不同dataset富集结果

生物信息分析中,接触最多的莫过于基因富集分析,故在此基础上目前已经开发了很多种富集分析工具,如网页版的DAVID、KOBAS、GOEAST,WebGestalt,基迪奥平台等,本地版工具如TBtools,此外常用的R包有pathfindRtopGOclusterProfiler等。在最后的报告中,我们通常会以各种图表的形式来展示富集的结果,常用的富集分析结果可视化的软件有REVIGOGOViewWEGO,cytoscape插件BinGO,基迪奥富集分析动态展示等。

这些工具各有千秋,可是依然具有一定的局限性,就是完成分析后需要转换数据才能进行可视化。Y叔开发的clusterProfiler既可以轻松完成各种富集分析又可以傻瓜式出图,所以一直受到生信工作者的青睐。本文主要就是介绍这个R包,通过compareCluster函数完成不同数据集的pathway富集结果的比较。

library(org.Hs.eg.db)
library(clusterProfiler)
library(ggplot2)

setwd("C:/Users/lenovo/Desktop")   
a=read.table("testgeneid.txt",header = FALSE) # 读取输入文件,主要是基因名 gene symbol
gene=as.character(a[,1])  # 转换为字符

ego <- enrichGO(gene=gene,OrgDb='org.Hs.eg.db',keyType='SYMBOL',ont= "CC",pAdjustMethod="BH",pvalueCutoff  = 0.01,qvalueCutoff  = 0.05) #必须指定keytype,GO富集

ego <- enrichGO(gene=gene,OrgDb='org.Hs.eg.db',keyType='SYMBOL',ont= "ALL",pAdjustMethod="BH",pvalueCutoff  = 0.01,qvalueCutoff  = 0.05)  

x <- enrichDO(gene          = gene,
              ont           = "DO",
              pvalueCutoff  = 0.01,
              pAdjustMethod = "BH",
              universe      = names(geneList),
              minGSSize     = 5,
              maxGSSize     = 500,
              qvalueCutoff  = 0.05,
              readable      = FALSE)  # DO富集

write.csv(summary(ekk),"KEGG-enrich.csv",row.names =F)
write.csv(summary(ego),"GO-enrich.csv",row.names =F)
barplot(ego, showCategory=15,title="EnrichmentGO") #条形图
dotplot(ego,title="EnrichmentGO_dot") #气泡图
enrichMap(ego, vertex.label.cex=1.2, layout=igraph::layout.kamada.kawai) #网络图
plotGOgraph(ego) #go图

gene= bitr(gene, fromType="SYMBOL", toType="ENTREZID", OrgDb="org.Hs.eg.db")

kk <- enrichKEGG(gene$ENTREZID, organism="hsa",keyType = "kegg",pvalueCutoff=0.05, pAdjustMethod="BH",qvalueCutoff=0.1)

接下来就是使用compareCluster比较两组基因富集结果,输入文件需要转换为gene id形式。

cp = list(a.gene=gene1$ENTREZID, b.gene=gene2$ENTREZID)  # 合并两个数据集,并转换为列表

xx <- compareCluster(cp, fun="enrichKEGG", organism="hsa", pvalueCutoff=0.01,pAdjustMethod = "BH",qvalueCutoff = 0.05) 

dotplot(xx,showCategory=10,includeAll=TRUE)

还可以改变形状

p1 + aes(shape = GeneRatio > 0.3)

还可以改变颜色

xx <- compareCluster(cp,
                     fun="enrichGO", 
                     OrgDb="org.Hs.eg.db", 
                     ont= "BP",
                     pvalueCutoff=0.01,
                     pAdjustMethod = "BH",
                     qvalueCutoff = 0.05)

p2 <- p1 + scale_color_continuous(low="purple",high = "green")

参考:
听说你也在画dotplot,但是我不服!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容