机器学习入门篇

工业革命是让机器干人干不了事,智能革命是让机器干人能干的事
机器学习是一门需要不断实验和试错的科学,拥有大量的数据几乎比拥有一个好的算法还要重要,没有一个机器学习模型能够对所有的问题都是最有效的。

人工智能、机器学习、深度学习之间的关系

人工智能(AI)

强化学习(Reinforcement Learning)

在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。常见的强化学习算法有时间差学习。
强化学习解释

迁移学习

迁移学习会让机器学习在这些非常珍贵的大数据和小数据上的能力全部释放出来。

迁移学习是深度学习与强化学习的结合体,能够将适用于大数据的模型迁移到小数据上,实现个性化迁移,这样一来能够避免数据寡头的出现。

当今全世界都在推动迁移学习,当今 AAAI 中大概有 20 多篇迁移学习相关文章,而往年只有五六篇。与此同时,如吴恩达等深度学习代表人物也开始做迁移学习。为什么呢?因为要在一个领域找到高质量的数据非常难,而把现成的模型用在高质量数据量少的领域则是非常好的解决方案。

数据挖掘

数据挖掘在通过算法得到的结果上,采用描述性统计学解释问题

从0 到 1,机器学习入门指南

机器学习并没有那么深奥,它还很有趣(1)

机器学习并没有那么深奥,它还很有趣(2)

机器学习并没有那么深奥,它还很有趣(3)

机器学习并没有那么深奥,它还很有趣(4)

从0 到 1,机器学习入门指南介绍的内容为:

  • 什么是机器学习?(房屋价格预测)
  • 机器学习的求解过程(初始化->计算结果->求解最小成本)
  • 什么是神经网络?
  • 神经网络记录状态(超级马里奥、单词预测)
  • 卷积神经网络(手写字符识别)
  • 算法评估()
  • 人脸识别的例子

写给大家看的机器学习书

什么是机器学习?机器学到的到底是什么?

训练数据长什么样 机器学到的模型是什么

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容