G1垃圾回收器

垃圾回收器的发展历程

file

背景

01、G1解决的问题

G1垃圾回收器是04年正式提出,12开始正式支持,在17年作为JDK9默认的垃圾处理器。

file

04年的时候,java程序堆的内存越来越大,从而导致程序中可存活的活对象越来越多,因此GCSTW时间越来越长。这是G1要解决的主要问题:STW带来的停顿时间太长了

CMS在此之前效率也很高,但活对象数量一多,STW时间也很长。而且CMS无法解决内存碎片化的问题。

G1还解决的问题是:CMSGC后,无法compact内存。

02、G1达成的目标

(1)减少由于STW而带来的程序延迟时间,做到伪实时、低延时、可设定目标;
可设定目标是指能够设置GC最大STW停顿的时间,G1会尽量达成目的,但不一定达成。

-XX:MaxGCPauseMillis=N

默认情况下是250毫秒

(2)解决CMSGC后,无法压缩程序内存的问题;

(3)在JDK9之后,默认的垃圾处理器就是G1;它适用于堆内存较大的情况下(>4~6G);

G1垃圾回收器

一、G1内存布局

G1不再遵循之前的堆中对象的分代排列,而是将堆分成若干个等大的区域。

file

而是变成:


file

默认是分成2048个区域,-XX:G1HeapRegionSize=N 2048

Humongous:当你分配的一个对象超过一半区域的大小时,这个对象就会被放入这个区域。这个区域属于老年代区域。

二、G1的介绍

G1垃圾回收器不再回收整个堆,而是选择一个Collection SetCS)。而且每次GC时,会估计每个Region中的垃圾比例,优先回收垃圾多的Region。这就为什么被叫做Garbage First算法。这也是为什么G1可以控制STW停顿时间的原因。
G1含有三种GC算法:

  • Full young GC:年轻代GC算法:STWParallelCopying
  • 老年代GC算法:Mostly-concurrent markingIncremental compaction
  • Mixed GC:混合GC

三、G1引来的问题

问题描述

G1将年轻代、老年代区域划分为许多个小区域,增加在GC判断对象是否为垃圾的难度。比如:

  • 老年代对象可能持有年代代的引用(跨代引用)
  • 不同的Region间的互相引用
    跨代/跨Region引用

假设在Full young GC时,某个年轻代Region对象可能被老年代的某个对象引用,那么我在回收这个年轻代Region时,怎么知道这里面的对象是否被其他Region、老年代引用呢?

问题解决

Remembered SetCard Table

file

1、CardTable
每个Region中分为很多区域,每个区域我们成为CardTable,对应的就是上述蓝色区域;每个CardTable有多个entry组成。当对应的内存空间发生改变时,就会标记为dirty

2、RememberedSet
Region1CardTable引用Region2CardTable时,Region2RememberedSet就会记录对应CardTable中的entry,可以根据其找到对应的内存区域。

3、解析
当某个内存对应进行赋值是,就是对象的set方法,我们可以在这种方法上添加dirty的描述。
这其实就是典型的时间换空间的做法:用额外的空间维护引用信息,这就是占用5~10%的过多内存占用。

解决方法的实现

1、Write Barrier介绍
Write barrier是一种向JVM注入的一小段代码,用于记录指针变化。比如说object.field = <reference>

JVM开始更新指针时,就经过以下几步:

  • 标记CardDirty
  • Card存入Dirty Card Queue队列中

这里有一个问题:为什么要放在队列里,而不是直接去更新RememberedSet呢?
这是因为JVM运行可能会有多个线程并行的修改RememberedSet,这样就需要花费额外的时间来解决多线程同步问题。而这种更新引用是频繁的,所以这种额外时间是无法忍受的。

2、Dirty Card Queue
这个队列有白、绿、黄、红四个颜色,表示应用线程往这个队列放任务的状态。

  • White
    表示没有应用线程往队列里放任务,什么事都不用干。

  • Green
    此时Refinement线程开始被激活,开始更新RS-XX:G1ConcRefinementGreenZone=N

  • Yellow
    此时全部的Refinement线程都被激活,来更新RS-XX:G1ConcRefinementYellowZone=N

  • Red
    这个时候,应用线程也开始参与排空队列的工作。-XX:G1ConcRefinementRedZone=N

四、GC算法的过程

1、Fully young GC

GC的过程

(1)STW
此时会暂停所有堆中的对象,将部分Region拷贝到指定区域。

file

(2)构建Collection Set
fully young GC就是选取所有的EdenSurvivor

(3)扫描GC Roots

(4)更新RememberedSet
排空Dirty Card Queue

(5)Process RS
根据RS找到要GC的对象被哪些对象引用了。

(6)对象拷贝
survivor区域对象的调整。

(7)Reference Processing

额外会做的事

G1记录每个阶段的时间,用于后期自动调优。比如说会记录EdenSurvivor的数量和GC时间,后期会根据我们之前设定的暂停目标来自动调整Region数量。
但是我们设置暂停目标越短,年轻代的Region数量就越少。但这可能会导致Fully young GC频繁发生。

2、Old GC

当堆用量达到一定程度时,就会触发old GC。可以通过以下参数进行设置:

-XX:InitatingHeapOccpancyPercent=45

old GC有一个很大特点就是并发进行的。但它是如何在堆中不断变化的情况下,确定哪些是要清理的垃圾对象呢?

三色标记算法

这种算法实现了在不暂停应用线程的情况下进行并发标记,标记过程过如下:
(1)将GC Root对象记录为黑色,其直接引用对象记录为灰色,并将这些灰色对象放入一个队列中

file

(2)从队列取出对象,将其标为黑色,将其引用对象记录为灰色,再放入队列中
file

(3)直到队列中无对象为止
file

三色标记算法的缺点:Lost Object Problem

三色标记算法并没有完全将所有的活对象都标记出来,这就是Lost Object Problem问题。比如说:
(1)刚开始时

file

(2)在即将描述将C标为灰色的一刹那

file

此时,C依然是活对象,但是已经无法将其标记了。

(3)结果

file

Lost Object Problem的解决

这种解决办法还是通过Write barrier技术来解决。当B.c=null,也就是C指针被删除时,G1还是被认为活对象。

那如果C是新生对象呢?这是老年代GC

Old GC过程

(1)STW
老年代GC会在这个时候,进行一次Fully young GC

(2)恢复应用线程

(3)使用三色标记算法并发标记(init marking

(4)STW

这时候会有一个Remark阶段,主要是解决SATBReference processing
还会有一个Cleanup阶段,用于回收全为空的区

(5)恢复应用线程

3、Mixed GC

我们直到CMS最大的缺点就是无法进行压缩操作,而G1就通过Mixed GC解决了这个问题。

Mixed GC没有固定触发条件,他是根据Fully young GC收集的信息和我们配置的时间来决定,是否触发Mixed GC。它会根据暂停目标,来优先选择垃圾最多的Old Region来执行。

Mixed GC会选择若干个Region进行,默认是选择1/8Old RegionEden RegionSurvivor Region

Mixed GC的过程跟Fully young GC的过程相同,都是:STWParallelCopying

原博客地址

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容

  • 因为G1的堆内存划分和这不太一样。我就来详细的探讨下G1。G1收集器采用不同的方法来分配堆, G1 将内存分配为 ...
    风雨it路阅读 1,202评论 0 0
  • G1垃圾收集器 G1是一个面向服务端的JVM垃圾收集器,适用于多核处理器、大内存容量的服务端系统。 它满足短时间停...
    LeonLu阅读 11,637评论 3 2
  • Serial收集器 单线程收集器,收集时会暂停所有工作线程(Stop The World),虚拟机运行在Clien...
    Sol__C阅读 409评论 0 1
  • 目前关于G1垃圾回收器的相关介绍很多,最近阅读了下oracle公司的说明,也想谈谈自己对于G1的理解,如果有...
    mawu_1014阅读 761评论 0 1
  • 2012年,六月份,我像大多数学生一样,顺利的大学毕业了! 毕业了就意味着我可以开始工作了毕业了就意味着一个人的学...
    kaizenly阅读 64评论 0 0